Зарядное устройство для автомобильного аккумулятора своими руками с конденсатором. Зарядка аккумулятора схема и принцип действия

У каждого автомобилиста наступал в жизни момент, когда, повернув ключ в замке зажигания не происходило абсолютно ничего. Стартер не проворачивался, а как следствие – машина не заводилась. Диагноз простой и ясный: аккумуляторная батарея полностью разряжена. Но имея под рукой даже самое простое с выходным напряжением 12 В, можно в течение одного часа восстановить АКБ и поехать по своим делам. Как сделать такое устройство своими руками, описано далее в статье.

Как правильно заряжать аккумуляторную батарею

Перед тем как сделать зарядное устройство для аккумулятора своими руками, следует узнать основные правила относительно его правильной зарядки. Если их не соблюдать, то ресурс батареи резко уменьшится и придётся покупать новую, так как восстановить аккумулятор практически невозможно.

Чтобы установить правильный ток, следует знать простую формулу: ток заряда равен току разряда батареи за период времени равный 10-ти часам. Это означает, что ёмкость АКБ следует разделить на 10. Например, для АКБ, ёмкостью 90 А/ч, необходимо установить ток заряда равный 9 Ампер. Если поставить больше, то произойдёт быстрый нагрев электролита и могут быть повреждены свинцовые соты. При меньшей силе тока понадобится очень много времени до полного заряда.

Теперь необходимо разобраться с напряжением. Для АКБ, разность потенциалов которых составляет 12 В, напряжение заряда не должно превышать 16.2 В. Это означает, что для одной банки напряжение должно быть в пределах 2.7 В.

Самое основное правило правильного заряда АКБ: не перепутать клеммы, во время присоединения батареи. Неправильно подключённые клеммы получили название переполюсовке, что приведёт к немедленному вскипанию электролита и окончательному выходу из строя аккумулятора.

Необходимые инструменты и расходные материалы

Сделать качественное зарядное устройство своими руками можно только в случае, если под этими самыми руками будут находиться приготовленные инструменты и расходные материалы.

Перечень инструментов и расходных материалов:

  • Мультиметр. Должен находится в инструментальной сумке каждого автомобилиста. Пригодится не только при сборке зарядного, но и в дальнейшем, при ремонте. Стандартный мультиметр включает в себя такие функции как измерение напряжения, силы тока, сопротивления и прозвонка проводников.
  • Паяльник. Достаточно мощности в 40 или 60 Вт. Слишком мощный паяльник брать нельзя, так как высокая температура приведёт к порче диэлектриков, например, в конденсаторах.
  • Канифоль. Необходима для быстрого увеличения температуры. При недостаточном прогреве деталей, качество пайки будет слишком низким.
  • Олово. Основной скрепляющий материал, используется для улучшения контакта двух деталей.
  • Термоусадочная трубка. Более новый вариант старой изоленты, легка в использовании и обладает лучшими диэлектрическими качествами.

Конечно, всегда под рукой должны находится такие инструменты как плоскогубцы, плоская и фигурная отвёртка. Собрав все вышеперечисленные элементы, можно приступать к сборке зарядного устройства для аккумуляторной батареи.

Последовательность изготовления зарядки на основе импульсного блока питания

Зарядка для аккумуляторов своими руками должна быть не только надёжной и качественной, но и обладать небольшой стоимостью. Поэтому нижеприведённая схема подходит идеально, для достижения подобных целей.

Готовая зарядка на основе импульсного источника питания

Что потребуется:

  • Трансформатор электронного типа от китайского производителя Tashibra.
  • Динистор КН102. Зарубежный динистор имеет маркировку DB3.
  • Силовые ключи MJE13007 в количестве двух штук.
  • Диоды КД213 в количестве четырёх штук.
  • Резистор, с сопротивлением не менее 10 Ом и мощностью 10 Вт. При установке резистора меньшей мощности, он будет постоянно греться и очень скоро выйдет из строя.
  • Любой трансформатор обратной связи, которые могут находится в старых радиоприёмниках.

Разместить схему можно на любой старой плате или купить для этого пластину недорого диэлектрического материала. После сборки схемы её необходимо будет спрятать в металлическом корпусе, который можно изготовить из простой жести. Схема должна быть изолирована от корпуса.

Пример зарядного устройства, смонтированного в корпусе старого системного блока

Последовательность изготовления зарядного устройства своими руками:

  • Переделать силовой трансформатор. Для этого следует размотать его вторичную обмотку, так как импульсные трансформаторы Tashibra дают только 12 В, что очень мало для автомобильного АКБ. На место старой обмотки следует намотать 16 витков нового сдвоенного провода, сечение которого не будет меньше 0.85 мм.Новая обмотка изолируется, и поверх неё наматывается следующая. Только теперь необходимо сделать всего 3 витка, сечение провода – не менее 0.7 мм.
  • Смонтировать защиту от короткого замыкания. Для этого понадобится тот самый резистор на 10 Ом. Его следует впаять в разрыв обмоток силового трансформатора и трансформатора обратной связи.

Резистор как защита от короткого замыкания

  • С помощью четырёх диодов КД213 спаять выпрямитель. Диодный мост простой, может работать с током высокой частоты, и его изготовление происходит по стандартной схеме.

Диодный мост на основе КД213А

  • Делаем ШИМ-контроллер. Необходим в зарядном устройстве, так как контролирует все силовые ключи в схеме. Его можно сделать самостоятельно, используя полевой транзистор (например, IRFZ44) и транзисторы обратной проводимости. Для этих целей идеально подходят элементы типа КТ3102.

ШИМ=контроллер высокого качества

  • Произвести стыковку основной схемы с силовым трансформатором и ШИМ-контроллера. После чего получившуюся сборку можно закреплять в самостоятельно сделанном корпусе.

Данное зарядное устройство достаточно простое, не требует больших затрат при сборке, обладает маленьким весом. Но схемы, сделанные на основе импульсных трансформаторов нельзя отнести к категории надёжных. Даже самый простой стандартный силовой трансформатор будет выдавать более стабильные показатели чем импульсные устройства.

При работе с любым зарядным устройством следует помнить, что нельзя допускать переполюсовки. Данная зарядка защищена от подобного, но всё же перепутанные клеммы сокращают срок службы аккумуляторной батареи, а резистор переменного типа в схеме позволяет контролировать ток заряда.

Простое зарядное устройство своими руками

Для изготовления данной зарядки потребуются элементы, которые можно найти в отслужившем телевизоре старого типа. Перед их монтажом в новую схему, детали необходимо проверить с помощью мультиметра.

Основной деталью схемы является силовой трансформатор, который можно найти не везде. Его маркировка: ТС-180-2. Трансформатор такого типа имеет 2 обмотки, напряжение которых составляет 6.4 и 4.7 В. Чтобы получить необходимую разность потенциалов, эти обмотки следует соединить последовательно – выход первой соединить со входом второй посредством пайки или обыкновенного клеммника.

Трансформатор типа ТС-180-2

Также понадобятся диоды типа Д242А в количестве четырёх штук. Так как данные элементы будут собраны в мостовую схему, потребуется отвод излишнего тепла от них во время работы. Поэтому также необходимо найти или приобрести 4 радиатора охлаждения для радиодеталей, площадью не менее 25 мм2.

Осталась только основа, для которой можно взять пластину из стеклотекстолита и 2 предохранителя, на 0.5 и 10А. Проводники допускается использовать любого сечения, только входной кабель должен быть не менее 2.5 мм2.

Последовательность сборки зарядного устройства:

  1. Первым элементом в схеме необходимо собрать диодный мост. Собирается он по стандартной схеме. Места выводов должны быть опущены вниз, а все диоды надо разместить на радиаторах охлаждения.
  2. От трансформатора, с выводов 10 и 10′ провести 2 провода ко входу диодного моста. Теперь следует немного доработать первичные обмотки трансформаторов, а для этого припаять между выводами 1 и 1′ перемычку.
  3. Припаять входные проводе к выводам 2 и 2′. Входной провод можно сделать из любого кабеля, например, от или любого отслужившего бытового прибора. Если же в наличии есть только провод, то к нему необходимо присоединить вилку.
  4. В разрыв провода, идущего до трансформатора, следует установить предохранитель, рассчитанный на 0.5А. В разрыв плюсового, который пойдёт непосредственно на клемму АКБ – предохранитель на 10А.
  5. Минусовой провод, идущий от диодного моста, припаивают последовательно к обыкновенной лампе, рассчитанной на 12 В, мощностью не более 60 Вт. Это поможет не только контролировать зарядку аккумулятора, но и ограничить зарядный ток.

Все элементы данного зарядного устройства можно разместить в жестяном корпусе, также сделанном своими руками. Пластину стеклотекстолита закрепить болтами, а трансформатор смонтировать прямо на корпус, предварительно разместив между ним и жестью такую же стеклотекстолитовую пластину.

Игнорирование законов электротехники может привести к тому, что зарядное устройство будет постоянно выходить из строя. Поэтому заранее стоит распланировать мощность зарядки, в зависимости от которой и собирать схему. Если превысить мощность цепи, то должной зарядки АКБ не будет, если не будет превышения рабочего напряжения.

На фотографии представлено самодельное автоматическое зарядное устройство для зарядки автомобильных аккумуляторов на 12 В током величиной до 8 А, собранного в корпусе от милливольтметра В3-38.

Почему нужно заряжать аккумулятор автомобиля
зарядным устройством

АКБ в автомобиле заряжается с помощью электрического генератора. Для защиты электрооборудования и приборов от повышенного напряжения, которое вырабатывает автомобильным генератором, после него устанавливают реле-регулятор, который ограничивает напряжение в бортовой сети автомобиля до 14,1±0,2 В. Для полной же зарядки аккумулятора требуется напряжение не менее 14,5 В.

Таким образом, полностью зарядить АКБ от генератора невозможно и перед наступлением холодов необходимо подзаряжать аккумулятор от зарядного устройства.

Анализ схем зарядных устройств

Привлекательной выглядит схема изготовления зарядного устройства из блока питания компьютера. Структурные схемы компьютерных блоков питания одинаковые, но электрические разные, и для доработки требуется высокая радиотехническая квалификация.

Интерес у меня вызвала конденсаторная схема зарядного устройства, КПД высокий, тепла не выделяет, обеспечивает стабильный ток заряда вне зависимости от степени заряда аккумулятора и колебаний питающей сети, не боится коротких замыканий выхода. Но тоже имеет недостаток. Если в процессе заряда пропадет контакт с аккумулятором, то напряжение на конденсаторах возрастает в несколько раз, (конденсаторы и трансформатор образуют резонансный колебательный контур с частотой электросети), и они пробиваются. Надо было устранить только этот единственный недостаток, что мне и удалось сделать.

В результате получилась схема зарядного устройства без выше перечисленных недостатков. Более 16 лет заряжаю ним любые кислотные аккумуляторы на 12 В. Устройство работает безотказно.

Принципиальная схема автомобильного зарядного устройства

При кажущейся сложности, схема самодельного зарядного устройства простая и состоит всего из нескольких законченных функциональных узлов.


Если схема для повторения Вам показалась сложной, то можно собрать более , работающую на таком же принципе, но без функции автоматического отключения при полной зарядке аккумулятора.

Схема ограничителя тока на балластных конденсаторах

В конденсаторном автомобильном зарядном устройстве регулировка величины и стабилизация силы тока заряда аккумулятора обеспечивается за счет включения последовательно с первичной обмоткой силового трансформатора Т1 балластных конденсаторов С4-С9. Чем больше емкость конденсатора, тем больше будет ток заряда аккумулятора.


Практически это законченный вариант зарядного устройства, можно подключить после диодного моста аккумулятор и зарядить его, но надежность такой схемы низкая. Если нарушится контакт с клеммами аккумулятора, то конденсаторы могут выйти из строя.

Емкость конденсаторов, которая зависит от величины тока и напряжения на вторичной обмотке трансформатора, можно приблизительно определить по формуле, но легче ориентироваться по данным таблицы.

Для регулировки тока, чтобы сократить количество конденсаторов, их можно подключать параллельно группами. У меня переключение осуществляется с помощью двух галетного переключателя, но можно поставить несколько тумблеров.

Схема защиты
от ошибочного подключения полюсов аккумулятора

Схема защиты от переполюсовки зарядного устройства при неправильном подключении аккумулятора к выводам выполнена на реле Р3. Если аккумулятор подключен неправильно, диод VD13 не пропускает ток, реле обесточено, контакты реле К3.1 разомкнуты и ток не поступает на клеммы аккумулятора. При правильном подключении реле срабатывает, контакты К3.1 замыкаются, и аккумулятор подключается к схеме зарядки. Такую схему защиты от переполюсовки можно использовать с любым зарядным устройством, как транзисторным, так и тиристорным. Ее достаточно включить в разрыв проводов, с помощью которых аккумулятор подключается к зарядному устройству.

Схема измерения тока и напряжения зарядки аккумулятора

Благодаря наличию переключателя S3 на схеме выше, при зарядке аккумулятора есть возможность контролировать не только величину тока зарядки, но и напряжение . При верхнем положении S3, измеряется ток, при нижнем – напряжение. Если зарядное устройство не подключено к электросети, то вольтметр покажет напряжение аккумулятора, а когда идет зарядка аккумулятора, то напряжение зарядки. В качестве головки применен микроамперметр М24 с электромагнитной системой. R17 шунтирует головку в режиме измерения тока, а R18 служит делителем при измерении напряжения.

Схема автоматического отключения ЗУ
при полной зарядке аккумулятора

Для питания операционного усилителя и создания опорного напряжения применена микросхема стабилизатора DA1 типа 142ЕН8Г на 9В. Микросхема это выбрана не случайно. При изменении температуры корпуса микросхемы на 10º, выходное напряжение изменяется не более чем на сотые доли вольта.

Система автоматического отключения зарядки при достижении напряжения 15,6 В выполнена на половинке микросхемы А1.1. Вывод 4 микросхемы подключен к делителю напряжения R7, R8 с которого на него подается опорное напряжение 4,5 В. Вывод 4 микросхемы подключен к другому делителю на резисторах R4-R6, резистор R5 подстроечный для установки порога срабатывания автомата. Величиной резистора R9 задается порог включения зарядного устройства 12,54 В. Благодаря применению диода VD7 и резистора R9, обеспечивается необходимый гистерезис между напряжением включения и отключения заряда аккумулятора.


Работает схема следующим образом. При подключении к зарядному устройству автомобильного аккумулятора, напряжение на клеммах которого меньше 16,5 В, на выводе 2 микросхемы А1.1 устанавливается напряжение достаточное для открывания транзистора VT1, транзистор открывается и реле P1 срабатывает, подключая контактами К1.1 к электросети через блок конденсаторов первичную обмотку трансформатора и начинается зарядка аккумулятора.

Как только напряжение заряда достигнет 16,5 В, напряжение на выходе А1.1 уменьшится до величины, недостаточной для поддержания транзистора VT1 в открытом состоянии. Реле отключится и контакты К1.1 подключат трансформатор через конденсатор дежурного режима С4, при котором ток заряда будет равен 0,5 А. В таком состоянии схема зарядного устройства будет находиться, пока напряжение на аккумуляторе не уменьшится до 12,54 В. Как только напряжение установится равным 12,54 В, опять включится реле и зарядка пойдет заданным током. Предусмотрена возможность, в случае необходимости, переключателем S2 отключить систему автоматического регулирования.

Таким образом, система автоматического слежения за зарядкой аккумулятора, исключит возможность перезаряда аккумулятора. Аккумулятор можно оставить подключенным к включенному зарядному устройству хоть на целый год. Такой режим актуален для автолюбителей, которые ездят только в летнее время. После окончания сезона автопробега можно подключить аккумулятор к зарядному устройству и выключить только весной. Даже если в электросети пропадет напряжение, при его появлении зарядное устройство продолжит заряжать аккумулятор в штатном режиме

Принцип работы схемы автоматического отключения зарядного устройства в случае превышения напряжения из-за отсутствия нагрузки, собранной на второй половинке операционного усилителя А1.2, такой же. Только порог полного отключения зарядного устройства от питающей сети выбран 19 В. Если напряжение зарядки менее 19 В, на выходе 8 микросхемы А1.2 напряжение достаточное, для удержания транзистора VT2 в открытом состоянии, при котором на реле P2 подано напряжение. Как только напряжение зарядки превысит 19 В, транзистор закроется, реле отпустит контакты К2.1 и подача напряжения на зарядное устройство полностью прекратится. Как только будет подключен аккумулятор, он запитает схему автоматики, и зарядное устройство сразу вернется в рабочее состояние.

Конструкция автоматического зарядного устройства

Все детали зарядного устройства размещены в корпусе миллиамперметра В3-38, из которого удалено все его содержимое, кроме стрелочного прибора. Монтаж элементов, кроме схемы автоматики, выполнен навесным способом.


Конструкция корпуса миллиамперметра, представляет собой две прямоугольные рамки, соединенные четырьмя уголками. В уголках с равным шагом сделаны отверстия, к которым удобно крепить детали.


Силовой трансформатор ТН61-220 закреплен на четырех винтах М4 на алюминиевой пластине толщиной 2 мм, пластина в свою очередь прикреплена винтами М3 к нижним уголкам корпуса. Силовой трансформатор ТН61-220 закреплен на четырех винтах М4 на алюминиевой пластине толщиной 2 мм, пластина в свою очередь прикреплена винтами М3 к нижним уголкам корпуса. На этой пластине установлен и С1. На фото вид зарядного устройства снизу.

К верхним уголкам корпуса закреплена тоже пластина из стеклотекстолита толщиной 2 мм, а к ней винтами конденсаторы С4-С9 и реле Р1 и Р2. К этим уголкам также прикручена печатная плата, на которой спаяна схема автоматического управления зарядкой аккумулятора. Реально количество конденсаторов не шесть, как по схеме, а 14, так как для получения конденсатора нужного номинала приходилось соединять их параллельно. Конденсаторы и реле подключены к остальной схеме зарядного устройства через разъем (на фото выше голубой), что облегчило доступ к другим элементам при монтаже.

На внешней стороне задней стенки установлен ребристый алюминиевый радиатор для охлаждения силовых диодов VD2-VD5. Тут также установлен предохранитель Пр1 на 1 А и вилка, (взята от блока питания компьютера) для подачи питающего напряжения.

Силовые диоды зарядного устройства закреплены с помощью двух прижимных планок к радиатору внутри корпуса. Для этого в задней стенке корпуса сделано прямоугольное отверстие. Такое техническое решение позволило к минимуму свести количество выделяемого тепла внутри корпуса и экономии места. Выводы диодов и подводящие провода распаяны на незакрепленную планку из фольгированного стеклотекстолита.

На фотографии вид самодельного зарядного устройства с правой стороны. Монтаж электрической схемы выполнен цветными проводами, переменного напряжения – коричневым, плюсовые – красным, минусовые – проводами синего цвета. Сечение проводов , идущих от вторичной обмотки трансформатора к клеммам для подключения аккумулятора должно быть не менее 1 мм 2 .

Шунт амперметра представляет собой отрезок высокоомного провода константана длиной около сантиметра, концы которого запаяны в медные полоски. Длина провода шунта подбирается при калибровке амперметра. Провод я взял от шунта сгоревшего стрелочного тестера. Один конец из медных полосок припаян непосредственно к выходной клемме плюса, ко второй полоске припаян толстый проводник, идущий от контактов реле Р3. На стрелочный прибор от шунта идут желтый и красный провод.

Печатная плата блока автоматики зарядного устройства

Схема автоматического регулирования и защиты от неправильного подключения аккумулятора к зарядному устройству спаяна на печатной плате из фольгированного стеклотекстолита.


На фотографии представлен внешний вид собранной схемы. Рисунок печатной платы схемы автоматического регулирования и защиты простой, отверстия выполнены с шагом 2,5 мм.


На фотографии выше вид печатной платы со стороны установки деталей с нанесенной красным цветом маркировкой деталей. Такой чертеж удобен при сборке печатной платы.


Чертеж печатной платы выше пригодится при ее изготовлении с помощью технологии с применением лазерного принтера.


А этот чертеж печатной платы пригодится при нанесении токоведущих дорожек печатной платы ручным способом.

Шкала стрелочного прибора милливольтметра В3-38 не подходила под требуемые измерения, пришлось начертить на компьютере свой вариант, напечатал на плотной белой бумаге и клеем момент приклеил сверху на штатную шкалу.

Благодаря большему размеру шкалы и калибровки прибора в зоне измерения, точность отсчета напряжения получилась 0,2 В.

Провода для подключения АЗУ к клеммам аккумулятора и сети

На провода для подключения автомобильного аккумулятора к зарядному устройству с одной стороны установлены зажимы типа крокодил, с другой стороны разрезные наконечники. Для подключения плюсового вывода аккумулятора выбран красный провод, для подключения минусового – синий. Сечение проводов для подключения к устройству аккумулятора должно быть не менее 1 мм 2 .


К электрической сети зарядное устройство подключается с помощью универсального шнура с вилкой и розеткой, как применяется для подключения компьютеров, оргтехники и других электроприборов.

О деталях зарядного устройства

Силовой трансформатор Т1 применен типа ТН61-220, вторичные обмотки которого соединены последовательно, как показано на схеме. Так как КПД зарядного устройства не менее 0,8 и ток заряда обычно не превышает 6 А, то подойдет любой трансформатор мощностью 150 ватт. Вторичная обмотка трансформатора должна обеспечить напряжение 18-20 В при токе нагрузки до 8 А. Если нет готового трансформатора, то можно взять любой подходящий по мощности и перемотать вторичную обмотку. Рассчитать число витков вторичной обмотки трансформатора можно с помощью специального калькулятора .

Конденсаторы С4-С9 типа МБГЧ на напряжение не менее 350 В. Можно использовать конденсаторы любого типа, рассчитанные на работу в цепях переменного тока.

Диоды VD2-VD5 подойдут любого типа, рассчитанные на ток 10 А. VD7, VD11 - любые импульсные кремневые. VD6, VD8, VD10, VD5, VD12 и VD13 любые, выдерживающие ток 1 А. Светодиод VD1 – любой, VD9 я применил типа КИПД29. Отличительная особенность этого светодиода, что он меняет цвет свечения при смене полярности подключения. Для его переключения использованы контакты К1.2 реле Р1. Когда идет зарядка основным током светодиод светит желтым светом, а при переключении в режим подзарядки аккумулятора – зеленым. Вместо бинарного светодиода можно установить любых два одноцветных, подключив их по ниже приведенной схеме.

В качестве операционного усилителя выбран КР1005УД1, аналог зарубежного AN6551. Такие усилители применяли в блоке звука и видео в видеомагнитофоне ВМ-12. Усилитель хорош тем, что не требует двухполярного питания, цепей коррекции и сохраняет работоспособность при питающем напряжении от 5 до 12 В. Заменить его можно практически любым аналогичным. Хорошо подойдут для замены микросхемы, например, LM358, LM258, LM158, но нумерация выводов у них другая, и потребуется внести изменения в рисунок печатной платы.

Реле Р1 и Р2 любые на напряжение 9-12 В и контактами, рассчитанными на коммутируемый ток 1 А. Р3 на напряжение 9-12 В и ток коммутации 10 А, например РП-21-003. Если в реле несколько контактных групп, то их желательно запаять параллельно.

Переключатель S1 любого типа, рассчитанный на работу при напряжении 250 В и имеющий достаточное количество коммутирующих контактов. Если не нужен шаг регулирования тока в 1 А, то можно поставить несколько тумблеров и устанавливать ток заряда, допустим, 5 А и 8 А. Если заряжать только автомобильные аккумуляторы, то такое решение вполне оправдано. Переключатель S2 служит для отключения системы контроля уровня зарядки. В случае заряда аккумулятора большим током, возможно срабатывание системы раньше, чем аккумулятор зарядится полностью. В таком случае можно систему отключить и продолжить зарядку в ручном режиме.

Электромагнитная головка для измерителя тока и напряжения подойдет любая, с током полного отклонения 100 мкА, например типа М24. Если нет необходимости измерять напряжение, а только ток, то можно установить готовый амперметр, рассчитанный на максимальный постоянный ток измерения 10 А, а напряжение контролировать внешним стрелочным тестером или мультиметром, подключив их к контактам аккумулятора.

Настройка блока автоматической регулировки и защиты АЗУ

При безошибочной сборке платы и исправности всех радиоэлементов, схема заработает сразу. Останется только установить порог напряжения резистором R5, при достижении которого зарядка аккумулятора будет переведена в режим зарядки малым током.

Регулировку можно выполнить непосредственно при зарядке аккумулятора. Но все, же лучше подстраховаться и перед установкой в корпус, схему автоматического регулирования и защиты АЗУ проверить и настроить. Для этого понадобится блок питания постоянного тока, у которого есть возможность регулировать выходное напряжение в пределах от 10 до 20 В, рассчитанного на выходной ток величиной 0,5-1 А. Из измерительных приборов понадобится любой вольтметр, стрелочный тестер или мультиметр рассчитанный на измерение постоянного напряжения, с пределом измерения от 0 до 20 В.

Проверка стабилизатора напряжения

После монтажа всех деталей на печатную плату нужно подать от блока питания питающее напряжение величиной 12-15 В на общий провод (минус) и вывод 17 микросхемы DA1 (плюс). Изменяя напряжение на выходе блока питания от 12 до 20 В, нужно с помощью вольтметра убедиться, что величина напряжения на выходе 2 микросхемы стабилизатора напряжения DA1 равна 9 В. Если напряжение отличается или изменяется, то DA1 неисправна.

Микросхемы серии К142ЕН и аналоги имеют защиту от короткого замыкания по выходу и если закоротить ее выход на общий провод, то микросхема войдет в режим защиты и из строя не выйдет. Если проверка показала, что напряжение на выходе микросхемы равно 0, то это не всегда означает о ее неисправности. Вполне возможно наличие КЗ между дорожками печатной платы или неисправен один из радиоэлементов остальной части схемы. Для проверки микросхемы достаточно отсоединить от платы ее вывод 2 и если на нем появится 9 В, значит, микросхема исправна, и необходимо найти и устранить КЗ.

Проверка системы защиты от перенапряжения

Описание принципа работы схемы решил начать с более простой части схемы, к которой не предъявляются строгие нормы по напряжению срабатывания.

Функцию отключения АЗУ от электросети в случае отсоединения аккумулятора выполняет часть схемы, собранная на операционном дифференциальном усилителе А1.2 (далее ОУ).

Принцип работы операционного дифференциального усилителя

Без знания принципа работы ОУ разобраться в работе схемы сложно, поэтому приведу краткое описание. ОУ имеет два входа и один выход. Один из входов, который обозначается на схеме знаком «+», называется неинвертирующим, а второй вход, который обозначается знаком «–» или кружком, называется инвертирующим. Слово дифференциальный ОУ означает, что напряжение на выходе усилителя зависит от разности напряжений на его входах. В данной схеме операционный усилитель включен без обратной связи, в режиме компаратора – сравнения входных напряжений.

Таким образом, если напряжение на одном из входов будет неизменным, а на втором изменятся, то в момент перехода через точку равенства напряжений на входах, напряжение на выходе усилителя скачкообразно изменится.

Проверка схемы защиты от перенапряжения

Вернемся к схеме. Неинвертирующий вход усилителя А1.2 (вывод 6) подключен к делителю напряжения, собранного на резисторах R13 и R14. Этот делитель подключен к стабилизированному напряжению 9 В и поэтому напряжение в точке соединения резисторов, никогда не изменяется и составляет 6,75 В. Второй вход ОУ (вывод 7) подключен ко второму делителю напряжения, собранному на резисторах R11 и R12. Этот делитель напряжения подключен к шине, по которой идет зарядный ток, и напряжение на нем меняется в зависимости от величины тока и степени заряда аккумулятора. Поэтому и величина напряжения на выводе 7 тоже будет, соответственно изменятся. Сопротивления делителя подобраны таким образом, что при изменении напряжения зарядки аккумулятора от 9 до 19 В напряжение на выводе 7 будет меньше, чем на выводе 6 и напряжение на выходе ОУ (вывод 8) будет больше 0,8 В и близко к напряжению питания ОУ. Транзистор будет открыт, на обмотку реле Р2 будет поступать напряжение и оно замкнет контакты К2.1. Напряжение на выходе также закроет диод VD11 и резистор R15 в работе схемы участвовать не будет.

Как только напряжение зарядки превысит 19 В (это может случится только в случае, если от выхода АЗУ будет отключен аккумулятор), напряжение на выводе 7 станет больше, чем на выводе 6. В этом случае на выходе ОУ напряжение скачкообразно уменьшится до нуля. Транзистор закроется, реле обесточится и контакты К2.1 разомкнутся. Подача питающего напряжения на ОЗУ будет прекращена. В момент, когда напряжение на выходе ОУ станет равно нулю, откроется диод VD11 и, таким образом, параллельно к R14 делителя подключится R15. Напряжение на 6 выводе мгновенно уменьшится, что исключит ложные срабатывания в момент равенства напряжений на входах ОУ из-за пульсаций и помех. Изменяя величину R15 можно менять гистерезис компаратора, то есть напряжение, при котором схема вернется в исходное состояние.

При подключения аккумулятора к ОЗУ напряжения на выводе 6 опять установится равным 6,75 В, а на выводе 7 будет меньше и схема начнет работать в штатном режиме.

Для проверки работы схемы достаточно изменять напряжение на блоке питания от 12 до 20 В и подключив вольтметр вместо реле Р2 наблюдать его показания. При напряжении меньше 19 В, вольтметр должен показывать напряжение, величиной 17-18 В (часть напряжения упадет на транзисторе), а при большем – ноль. Желательно все же подключить к схеме обмотку реле, тогда будет проверена не только работа схемы, но и его работоспособность, а по щелчкам реле можно будет контролировать работу автоматики без вольтметра.

Если схема не работает, то нужно проверить напряжения на входах 6 и 7, выходе ОУ. При отличии напряжений от указанных выше, нужно проверить номиналы резисторов соответствующих делителей. Если резисторы делителей и диод VD11 исправны, то, следовательно, неисправен ОУ.

Для проверки цепи R15, D11 достаточно отключить одни из выводов этих элементов, схема будет работать, только без гистерезиса, то есть включаться и отключаться при одном и том же подаваемом с блока питания напряжении. Транзистор VT12 легко проверить, отсоединив один из выводов R16 и контролируя напряжение на выходе ОУ. Если на выходе ОУ напряжение изменяется правильно, а реле все время включено, значит, имеет место пробой между коллектором и эмиттером транзистора.

Проверка схемы отключения аккумулятора при полной его зарядке

Принцип работы ОУ А1.1 ничем не отличается от работы А1.2, за исключением возможности изменять порог отключения напряжения с помощью подстроечного резистора R5.

Для проверки работы А1.1, питающее напряжение, поданное с блока питания плавно увеличивается и уменьшается в пределах 12-18 В. При достижении напряжения 15,6 В должно отключиться реле Р1 и контактами К1.1 переключить АЗУ в режим зарядки малым током через конденсатор С4. При снижении уровня напряжения ниже 12,54 В реле должно включится и переключить АЗУ в режим зарядки током заданной величины.

Напряжение порога включения 12,54 В можно регулировать изменением номинала резистора R9, но в этом нет необходимости.

С помощью переключателя S2 имеется возможность отключать автоматический режим работы, включив реле Р1 напрямую.

Схема зарядного устройства на конденсаторах
без автоматического отключения

Для тех, кто не имеет достаточного опыта по сборке электронных схем или не нуждается в автоматическом отключении ЗУ по окончании зарядки аккумулятора, предлагаю упрощенней вариант схемы устройства для зарядки кислотных автомобильных аккумуляторов. Отличительная особенность схемы в ее простоте для повторения, надежности, высоком КПД и стабильным током заряда, наличие защиты от неправильного подключения аккумулятора, автоматическое продолжение зарядки в случае пропадания питающего напряжения.


Принцип стабилизации зарядного тока остался неизменным и обеспечивается включением последовательно с сетевым трансформатором блока конденсаторов С1-С6. Для защиты от перенапряжения на входной обмотке и конденсаторах используется одна из пар нормально разомкнутых контактов реле Р1.

Когда аккумулятор не подключен, контакты реле Р1 К1.1 и К1.2 разомкнуты и даже если зарядное устройство подключено к питающей сети ток не поступает на схему. Тоже самое происходит, если подключить ошибочно аккумулятор по полярности. При правильном подключении аккумулятора ток с него поступает через диод VD8 на обмотку реле Р1, реле срабатывает и замыкаются его контакты К1.1 и К1.2. Через замкнутые контакты К1.1 сетевое напряжение поступает на зарядное устройство, а через К1.2 на аккумулятор поступает зарядный ток.

На первый взгляд кажется, что контакты реле К1.2 не нужны, но если их не будет, то при ошибочном подключении аккумулятора, ток потечет с плюсового вывода аккумулятора через минусовую клемму ЗУ, далее через диодный мост и далее непосредственно на минусовой вывод аккумулятора и диоды моста ЗУ выйдут из строя.

Предложенная простая схема для зарядки аккумуляторов легко адаптируется для зарядки аккумуляторов на напряжение 6 В или 24 В. Достаточно заменить реле Р1 на соответствующее напряжение. Для зарядки 24 вольтовых аккумуляторов необходимо обеспечить выходное напряжение с вторичной обмотки трансформатора Т1 не менее 36 В.

При желании схему простого зарядного устройства можно дополнить прибором индикации зарядного тока и напряжения, включив его как в схеме автоматического зарядного устройства.

Порядок зарядки автомобильного аккумулятора
автоматическим самодельным ЗУ

Перед зарядкой снятый с автомобиля аккумулятор необходимо очистить от грязи и протереть его поверхности, для удаления кислотных остатков, водным раствором соды. Если кислота на поверхности есть, то водный раствор соды пенится.

Если аккумулятор имеет пробки для заливки кислоты, то все пробки нужно выкрутить, для того, чтобы образующиеся при зарядке в аккумуляторе газы могли свободно выходить. Обязательно нужно проверить уровень электролита, и если он меньше требуемого, долить дистиллированной воды.

Далее нужно переключателем S1 на зарядном устройстве выставить величину тока заряда и подключить аккумулятор соблюдая полярность (плюсовой вывод аккумулятора нужно подсоединить к плюсовому выводу зарядного устройства) к его клеммам. Если переключатель S3 находится в нижнем положении, то стрелка прибора на зарядном устройстве сразу покажет напряжение, которое выдает аккумулятор. Осталось вставить вилку сетевого шнура в розетку и процесс зарядки аккумулятора начнется. Вольтметр уже начнет показывать напряжение зарядки.

В статье будет рассказано о том, как своими руками изготовить самодельное Схемы вы можете использовать абсолютно любые, но наиболее простым вариантом изготовления является переделка компьютерного БП. Если у вас имеется такой блок, применение ему найти будет довольно просто. Для питания материнских плат используется напряжение величиной 5, 3.3, 12 Вольт. Как вы понимаете, интерес для вас представляет напряжение 12 Вольт. Зарядное устройство позволит производить зарядку аккумуляторов, емкость которых лежит в диапазоне от 55 до 65 Ампер-часов. Другими словами, его хватит для подзарядки аккумуляторов большинства автомобилей.

Общий вид схемы

Чтобы произвести переделку, нужно воспользоваться схемой, представленной в статье. своими руками из БП персонального компьютера изготовленное, позволяет контролировать на выходе ток зарядки и напряжение. Нужно обратить внимание на то, что имеется защита от КЗ - предохранитель на 10 Ампер. Но его устанавливать необязательно, так как в большинстве БП персональных компьютеров имеется защита, которая отключает устройство в случае КЗ. Поэтому схемы зарядных устройств для аккумуляторов из БП компьютеров способны сами себя защитить от КЗ.

ШИ-контроллер (обозначен DA1), как правило, в БП используется двух типов - KA7500 или TL494. Теперь немного теории. Может ли нормально подзарядить аккумулятор блок питания компьютера? Ответ - может, так как свинцовые АКБ большинства автомобилей имеют емкость 55-65 Ампер-час. А для нормальной зарядки ему необходим ток, равный 10 % от емкости АКБ - не более 6,5 Ампер. Если блок питания имеет мощность свыше 150 Вт, то его цепь «+12 В» способна отдать такой ток.

Начальный этап переделки

Чтобы повторить простое самодельное зарядное устройство для аккумулятора, необходимо слегка усовершенствовать блок питания:

  1. Избавляетесь от всех ненужных проводов. При помощи паяльника их убираете, чтобы не мешали.
  2. По схеме, приведенной в статье, находите постоянный резистор R1, который необходимо выпаять и на его место установить подстроечный с сопротивлением 27 кОм. На верхний контакт этого резистора впоследствии нужно подавать постоянное напряжение «+12 В». Без этого не сможет работать устройство.
  3. 16-й вывод микросхемы отсоединяется от минуса.
  4. Далее, нужно рассоединить 15-й и 14-й выводы.

Довольно простое получается самодельное Схемы можно использовать любые, но проще сделать из компьютерного БП - он легче, проще в эксплуатации, доступнее. Если сравнить с трансформаторными устройствами, то масса приборов существенно отличается (как и габариты).

Регулировки зарядного устройства

Задняя стенка теперь будет передней, изготовить ее желательно из куска материала (текстолит идеально подойдет). На этой стенке необходимо установить регулятор зарядного тока, обозначенный на схеме R10. Токоизмерительный резистор лучше всего использовать как можно мощнее - возьмите два с мощностью 5 Вт и сопротивлением 0,2 Ом. Но все зависит от выбора схемы зарядных устройств для аккумуляторов. В некоторых конструкциях не нужно использовать мощные резисторы.

При соединении их параллельно получается увеличение мощности в два раза, а сопротивление становится равным 0,1 Ом. На передней стенке также располагаются индикаторы - вольтметр и амперметр, которые позволяют контролировать соответствующие параметры зарядного устройства. Для точной настройки зарядчика используется подстроечный резистор, при помощи которого подается напряжение на 1-й вывод ШИ-контроллера.

Требования к устройству

Окончательная сборка

К 1, 14, 15 и 16 выводам нужно припаять многожильные тонкие провода. Изоляция у них должна быть надежной, чтобы под нагрузкой не произошло нагревание, в противном случае самодельное зарядное устройство для автомобиля выйдет из строя. После сборки нужно установить подстроечным резистором напряжение около 14 Вольт (+/-0,2 В). Именно такое напряжение считается нормальным для зарядки аккумуляторных батарей. Причем это значение должно быть в режиме холостого хода (без подключенной нагрузки).

На проводах, которые подключаются к аккумулятору, необходимо установить два зажима-крокодила. Один красного цвета, второй черного. Такие можно купить в любом магазине хозтоваров или автомобильных запчастей. Вот такое получается несложное самодельное зарядное устройство для автомобильного аккумулятора. Схемы соединений: черный крепится к минусу, а красный к плюсу. Процесс зарядки полностью автоматический, вмешательства человека не требуется. Но стоит рассмотреть основные этапы этого процесса.

Процесс зарядки аккумулятора

При начальном цикле вольтметр будет показывать напряжение примерно 12,4-12,5 В. Если аккумулятор имеет емкость 55 А*ч, то нужно вращать регулятор до тех пор, пока амперметр не покажет значение 5,5 Ампер. Это означает, что ток зарядки равен 5,5 А. По мере того, как заряжается аккумулятор, ток уменьшается, а напряжение стремится к максимуму. В итоге в самом конце ток будет равен 0, а напряжение 14 В.

Независимо от того, какая для изготовления использовалась подборка схем и конструкций зарядных устройств, принцип работы во многом схож. Когда аккумулятор заряжен полностью, устройство начинает компенсировать ток саморазряда. Поэтому вы не рискуете тем, что проявится перезарядка батареи. Поэтому зарядное устройство может быть подключено к аккумулятору и сутки, и неделю, и даже месяц.

Если у вас нет измерительных приборов, которые не жалко было бы установить в устройство, можно от них отказаться. Но для этого необходимо сделать шкалу для потенциометра - обозначить положение для значений тока зарядки, равных 5,5 А и 6,5 А. Конечно, установленный амперметр намного удобнее - можно визуально наблюдать процесс протекания зарядки аккумуляторной батареи. Но и зарядное устройство для аккумулятора, своими руками изготовленное без использования приборов, может с легкостью эксплуатироваться.

Автоматическое зарядное устройство для автомобильного аккумулятора состоит из источника электропитания и схем защиты. Собрать его самостоятельно можно, владея навыками электромонтажных работ. При сборке используют как сложные электросхемы, так и конструируют более простые варианты устройства.

[ Скрыть ]

Требования к самодельным зарядным устройствам

Чтобы зарядка автоматически могла восстановить АКБ автомобиля, к ней предъявляются жесткие требования:

  1. Любое простое современное ЗУ должно быть автономным. Благодаря этому за работой оборудования не придется следить, в частности, если оно функционирует ночью. Устройство будет самостоятельно контролировать рабочие параметры напряжения и тока заряда. Этот режим называется автоматом.
  2. Зарядное оборудование должно самостоятельно обеспечивать стабильный уровень напряжения 14,4 вольта. Этот параметр необходим для восстановления любых батарей, работающих в 12-вольтной сети.
  3. Зарядное оборудование должно обеспечить необратимое выключение батареи от прибора при двух условиях. В частности если ток заряда или напряжение увеличится более, чем на 15,6 вольт. Оборудование должно иметь функцию самоблокировки. Пользователю, чтобы сбросить рабочие параметры, придется отключить и активировать прибор.
  4. Оборудование обязательно должно быть защищено от переплюсовки, иначе АКБ может выйти из строя. Если потребитель спутает полярность и неверно подключит минусовой и плюсовой контакт, произойдет замыкание. Важно, чтобы зарядное оборудование обеспечивало защиту. Схема дополняется предохранительным устройством.
  5. Для подключения ЗУ к аккумуляторной батарее потребуется два провода, каждый из которых должно иметь сечение 1 мм2. На один конец каждого проводника требуется установить зажим типа крокодил. С другой стороны устанавливаются разрезные наконечники. Положительный контакт должен быть выполнен в красной оболочке, а отрицательный — в синей. Для бытовой сети используется универсальный кабель, оснащенный вилкой.

Если аппарат полностью сделать своими руками, несоблюдение требований навредит не только зарядному прибору, но и аккумулятору.

Владимир Кальченко подробно рассказал о переделке ЗУ и об использовании подходящих для этой цели проводов.

Конструкция автоматического зарядного устройства

Простейший образец зарядного приспособления конструктивно включает в себя главную деталь — понижающее трансформаторное устройство. В этом элементе производится снижение параметра напряжения с 220 до 13,8 вольт, которое требуется для восстановления заряда аккумулятора. Но трансформаторное устройство может снижать только эту величину. А преобразование переменного тока на постоянный осуществляется специальным элементом — диодным мостом.

Каждое зарядное устройство должно быть оборудовано диодным мостом, поскольку эта деталь выпрямляет значение тока и позволяет разделить его на плюсовой и минусовой полюса.

В любой схеме за этой деталью обычно устанавливается амперметр. Компонент предназначен для демонстрации силы тока.

Простейшие конструкции зарядных приборов оборудуются стрелочными датчиками. В более усовершенствованных и дорогих версиях используются цифровые амперметры, а кроме них электроника может дополняться и вольтметрами.

Некоторые модели приборов позволяют потребителю изменять уровень напряжения. То есть появляется возможность заряда не только 12-вольтных аккумуляторов, но и батарей, рассчитанных на работу в 6- и 24-вольтных сетях.

От диодного моста отходят провода с положительным и отрицательным клеммным зажимом. С их помощью выполняется подключение оборудования к батарее. Вся конструкция заключается в пластиковый либо металлический корпус, от которого отходит кабель с вилкой для подключения к электросети. Также из устройства выводятся два провода с минусовым и плюсовым клеммным зажимом. Для обеспечения более безопасной работы зарядного оборудования схема дополняется плавким предохранительным устройством.

Пользователь Артем Квантов наглядно разобрал фирменный прибор для подзарядки и рассказал о его конструктивных особенностях.

Схемы автоматических зарядных устройств

При наличии навыка работы с электрооборудованием можно произвести сборку прибора самостоятельно.

Простые схемы

Такие варианты приборов делятся на:

  • устройства с одним диодным элементом;
  • оборудование с диодным мостом;
  • прибора, оснащенные сглаживающими конденсаторами.

Схема с одним диодом

Здесь есть два варианта:

  1. Можно собрать схему с трансформаторным устройством и установить диодный элемент после него. На выходе зарядного оборудования ток будет пульсирующим. Его биения будут серьезными, поскольку фактически срезывается одна полуволна.
  2. Можно собрать схему, используя блок питания от ноутбука. При его используется мощный выпрямительный диодный элемент с обратным напряжением больше 1000 вольт. Его ток должен составить не менее 3 ампер. Внешний вывод штекера питания будет отрицательным, а внутренний — положительным. Такую схему обязательно надо дополнить ограничительным сопротивлением, в качестве которого допускается применение лампочки для освещения салона.

Допускается применение более мощного осветительного устройства от указателя поворота, габаритных огней либо стоповых сигналов. При использовании блока питания от ноутбука, это может привести к его перегрузке. Если используется диод, то в качестве ограничителя надо установить лампу накаливания на 220 вольт и 100 ватт.

При применении диодного элемента выполняется сборка простой схемы:

  1. Сначала идет клемма от бытовой розетки на 220 вольт.
  2. Затем — отрицательный контакт диодного элемента.
  3. Следующим будет положительный вывод диода.
  4. Затем подключается ограничительная нагрузка - источник освещения.
  5. Следующим будет отрицательный контакт аккумулятора.
  6. Затем положительный вывод батареи.
  7. И вторая клемма для подключения к 220-вольтной сети.

При применении источника освещения на 100 ватт параметр тока заряда будет примерно 0,5 ампер. Так за одну ночь устройство сможет отдать аккумуляторной батарее 5 А/ч. Этого хватит, чтобы покрутить стартерный механизм транспортного средства.

Чтобы увеличить показатель, можно соединить параллельно три источника освещения по 100 ватт, за ночь это позволит восполнить половину емкости батареи. Некоторые пользователи вместо ламп используют электроплиты, но этого делать нельзя, поскольку из строя выйдет не только диодный элемент, но и аккумулятор.

Простейшая схема с одним диодом Электросхема подключения АКБ к сети

Схема с диодным мостом

Этот компонент предназначен для «заворачивания» отрицательной волны наверх. Сам ток будет также пульсирующим, но его биения значительно меньше. Данный вариант схемы используется чаще остальных, но не является самым эффективным.

Диодный мост можно сделать самому, используя выпрямляющие элемент, или приобрести готовую деталь.

Электросхема ЗУ с диодным мостом

Схема со сглаживающим конденсатором

Эта деталь должна быть рассчитана на 4000-5000 мкФ и 25 вольт. На выходе полученной электросхемы образуется постоянный ток. Устройство обязательно дополняется предохранительными элементами на 1 ампер, а также измерительным оборудованием. Эти детали позволяют контролировать процесс восстановления аккумулятора. Можно их не использовать, но тогда периодически потребуется подключать мультиметр.

Если производить мониторинг напряжения удобно (путем подключения клемм к щупам), то с током будет сложнее. В данном режиме функционирования измерительное устройство придется подключать в разрыв электроцепи. Пользователю понадобится каждый раз отключать питание от сети, ставить тестер в режим замера тока. Затем активировать питание и разбирать электроцепь. Поэтому рекомендуется добавить в схему как минимум один амперметр на 10 ампер.

Основной минус простых электросхем заключается в отсутствии возможности регулировки параметров заряда.

При подборе элементной базы следует выбирать рабочие параметры так, чтобы на выходе величина силы тока составила 10% от общей емкости АКБ. Возможно незначительное снижение этой величины.

Если полученный параметр тока будет больше, чем требуется, схему можно дополнитель резисторным элементом. Он устанавливается на положительном выходе диодного моста, непосредственно перед амперметром. Уровень сопротивления подбирается в соответствии с использующимся мостом с учетом показателя тока, а мощность резистора должна быть более высокой.

Электросхема со сглаживающим конденсаторным устройством

Схема с возможностью ручной регулировки тока заряда для 12 В

Чтобы обеспечить возможность изменения параметра тока, необходимо поменять сопротивление. Простой способ решить эту проблему — поставить переменный подстроечный резистор. Но этот метод нельзя назвать самым надежным. Чтобы обеспечить более высокую надежность, требуется реализовать ручную регулировку с двумя транзисторными элементами и подстроечным резистором.

С помощью переменного резисторного компонента будет меняться ток зарядки. Эта деталь устанавливается после составного транзистора VT1-VT2. Поэтому ток через данный элемент будет проходить невысокий. Соответственно, небольшой будет и мощность, она составит около 0,5-1 Вт. Рабочий номинал зависит от использующихся транзисторных элементов и выбирается опытным путем, детали рассчитаны на 1-4,7 кОм.

В схеме используется трансформаторное устройство на 250-500 Вт, а также вторичная обмотка на 15-17 вольт. Сборка диодного моста осуществляется на деталях, рабочий ток которых составляет от 5 ампер и больше. Транзисторные элементы подбираются из двух вариантов. Это могут быть германиевые детали П13-П17 либо кремниевые устройства КТ814 и КТ816. Чтобы обеспечить качественный отвод тепла, схема должна быть размещена на радиаторном устройстве (не меньше 300 см3) либо стальной пластине.

На выходе оборудования устанавливается предохранительное устройство ПР2, рассчитанное на 5 ампер, а на входе — ПР1 на 1 А. Схема оснащается сигнальными световыми индикаторами. Один из них используется для определения напряжения в сети 220 вольт, второй — для тока заряда. Допускается использование любых источников освещения, рассчитанных на 24 вольта, в том числе диодов.

Электросхема для зарядного прибора с функцией ручной регулировки

Схема защиты от переплюсовки

Есть два варианта реализации такого ЗУ:

  • с использованием реле Р3;
  • путем сборки ЗУ с интегральной защитой, но не только от переплюсовки, но и от перенапряжения и перезаряда.

С реле Р3

Данный вариант схемы может применяться с любым зарядным оборудованием, как тиристорным, так и транзисторным. Ее необходимо включить в разрыв кабелей, посредством которых производится подключение батареи к ЗУ.

Схема защиты оборудования от переплюсовки на реле Р3

Если аккумуляторная батарея подключена к сети некорректно, диодный элемент VD13 не будет пропускать ток. Реле электросхемы обесточено, а его контакты разомкнуты. Соответственно, ток не сможет поступать на клеммы батареи. Если подключение выполнено правильно, то реле активируется и его контактные элементы замыкаются, поэтому АКБ заряжается.

С интегрированной защитой от переплюсовки, перезаряда и перенапряжения

Данный вариант электросхемы можно встроить в уже использующийся самодельный источник питания. В ней применяется медленный отклик аккумулятора на скачок напряжения, а также гистерезис реле. Напряжение с током отпускания будет в 304 раза меньше данного параметра при срабатывании.

Применяется реле переменного тока на напряжение активации 24 вольта, а ток величиной 6 ампер идет через контакты. При активации зарядного прибора включается реле, происходит замыкание контактных элементов и начинается зарядка.

Параметр напряжения на выходе трансформаторного устройства снижается ниже 24 вольт, но на выходе зарядного прибора будет 14,4 В. Реле должно удерживать это значение, но при появлении экстратока первичная величина напряжения еще больше просядет. Это приведет к отключению реле и разрыву электроцепи заряда.

Использование диодов Шоттки в этом случае нецелесообразно, поскольку данный тип схемы будет иметь серьезные недостатки:

  1. Отсутствует защита от скачка напряжения по контакту от переплюсовки, если аккумулятор полностью разряжен.
  2. Нет самоблокировки оборудования. В результате воздействия экстратока реле будет отключаться, пока не выйдут из строя контактные элементы.
  3. Нечеткое срабатывание оборудования.

Из-за этого добавить в данную схему устройство для регулировки тока срабатывания не имеет смысла. Реле и трансформаторное устройство точно подбираются друг к другу, чтобы повторяемость элементов была близка к нулю. Ток заряда проходит через замкнутые контакты реле К1, в результате чего снижается вероятность их выхода из строя из-за обгорания.

Обмотка К1 должна подключаться по логической электросхеме:

  • к модулю защиты от экстратока, это VD1, VT1 и R1;
  • к устройству защиты от перенапряжения, это элементы VD2, VT2, R2-R4;
  • а также к электроцепи самоблокировки К1.2 и VD3.


Схема с интегрированной защитой от переплюсовки, перезаряда и перенапряжения

Основной минус состоит в необходимости налаживания схемы с применением балластной нагрузки, а также мультиметра:

  1. Производится выпаивание элементов К1, VD2 и VD3. Либо при сборке их можно не запаивать.
  2. Выполняется активация мультиметра, который надо заранее настроить на замер напряжения в 20 вольт. Его надо подключить вместо обмотки К1.
  3. Аккумулятор пока не подключается, вместо него устанавливается резисторное устройство. Оно должно обладать сопротивлением в 2,4 Ома для тока заряда 6 А или 1,6 Ом для 9 ампер. Для 12 А резистор должен быть рассчитан на 1,2 Ом и не меньше, чем на 25 Вт. Резисторный элемент можно накрутить из аналогичной проволоки, которая использовалась для R1.
  4. На вход от зарядного оборудования подается напряжение 15,6 вольт.
  5. Должна сработать токовая защита. Мультиметр покажет напряжение, поскольку элемент сопротивления R1 выбран с небольшим избытком.
  6. Производится уменьшение параметра напряжения, пока тестер не покажет 0. Значение выходного напряжения надо записать.
  7. Затем производится выпайка детали VT1, а VD2 и К1 устанавливаются на место. R3 необходимо поставить в крайнее нижнее положение в соответствии с электросхемой.
  8. Величина напряжения зарядного оборудования увеличивается, пока на нагрузке не будет 15,6 вольт.
  9. Элемент R3 плавно вращается, пока не сработает К1.
  10. Выполняется снижение напряжения зарядного прибора до значения, которое было записано ранее.
  11. Обратно устанавливаются и припаиваются элементы VT1 и VD3. После этого электросхему можно проверять на работоспособность.
  12. Через амперметр выполняется подключение рабочего, но севшего или недозаряженного аккумулятора. К батарее надо подсоединить тестер, который заранее настроен на измерение напряжения.
  13. Пробный заряд необходимо провести с непрерывным контролем. В момент, когда тестер покажет 14,4 вольта на аккумуляторе, необходимо засечь ток содержания. Этот параметр должен быть в норме или близким к нижнему пределу.
  14. Если величина тока содержания высокая, то напряжение зарядного прибора следует снизить.

Схема автоматического отключения при полной зарядке аккумулятора

Автоматика должна представлять собой электросхему, оснащенную системой питания операционного усилительного устройства и опорного напряжения. Для этого используется плата стабилизатора DA1 класса 142ЕН8Г для 9 вольт. Данную схему необходимо предназначать, чтобы уровень выходного напряжения при измерении температуры платы на 10 градусов практически не менялся. Изменение составит не больше, чем сотые доли вольта.

В соответствии с описанием схемы, система автоматической деактивации при увеличении напряжения на 15,6 вольт делается на половине платы А1.1. Четвертый ее вывод соединяется с делителем напряжения R7 и R8, с которого подается опорная величина, составляющая 4,5В. Рабочим параметром резисторного устройства задается порог активации зарядного приспособления 12,54 В. В результате использования диодного элемента VD7 и детали R9 можно обеспечить нужный гистерезис между величиной напряжения активации и отключения заряда батареи.

Электросхема ЗУ с автоматической деактивацией при заряженной батарее

Описание действия схемы такой:

  1. Когда происходит подключение батареи, уровень напряжения на клеммах которого меньше 16,5 вольт, на втором выводе схема А1.1 устанавливается параметр. Данное значение достаточно, чтобы транзисторный элемент VT1 открылся.
  2. Происходит открытие этой детали.
  3. Активируется реле Р1. В результате к сети через блок конденсаторных механизмов посредством контактных элементов подключается первичная обмотка трансформаторного устройства.
  4. Начинается процесс восполнения заряда АКБ.
  5. Когда уровень напряжения увеличится до 16,5 вольт, это значение на выходе А1.1 снизится. Уменьшение происходит до величины, которой недостаточно для поддержания транзисторного устройства VT1 в открытом состоянии.
  6. Происходит отключение реле и контактные элементы К1.1 подключать трансформаторный узел через конденсаторное устройство С4. При нем величина тока заряда будет 0,5 А. В этом состоянии схема оборудования будет работать, пока величина напряжения на батарее не снизится до 12,54 вольт.
  7. После того, как это произойдет, выполняется активация реле. Продолжается зарядка АКБ заданным пользователем током. В данной схеме реализована возможность отключения системы автоматической регулировки. Для этого используется переключательное устройство S2.

Данный порядок работы автоматического зарядного устройства для автомобильного аккумулятора позволяет предотвратить его разряд. Пользователь может оставить включенным оборудование хоть на неделю, это не навредит батарее. Если в бытовой сети пропадет напряжение, при его появлении ЗУ продолжит заряжать аккумулятор.

Если говорить о принципе действия схемы, собранной на второй половине платы А1.2, то он идентичен. Но уровень полной деактивации зарядного оборудования от сети питания составит 19 вольт. Если величина напряжения меньше, на восьмом выход платы А1.2 оно будет достаточным, чтобы удержать транзисторное устройство VT2 в открытом положении. При нем ток будет подаваться на реле Р2. Но если величина напряжения составит более 19 вольт, то транзисторное устройство закроется и контактные элементы К2.1 разомкнутся.

Необходимые материалы и инструменты

Описание деталей и элементов, которые потребуются для сборки:

  1. Силовой трансформаторное устройство Т1 класса ТН61-220. Его вторичные обмотки должны быть подключены последовательно. Можно использовать любой трансформатор, мощность которого не больше 150 ватт, поскольку ток заряда обычно составляет не более 6А. Вторичная обмотка устройства при воздействии электротока до 8 ампер должна обеспечить напряжение в диапазоне 18-20 вольт. При отсутствии готового трансформатора допускается применение деталей аналогичной мощности, но потребуется перемотать вторичную обмотку.
  2. Конденсаторные элементы С4-С9 должны соответствовать классу МГБЧ и иметь напряжение не ниже 350 вольт. Допускается применение устройств любого типа. Главное, чтобы они предназначались для функционирования в цепях переменного тока.
  3. Диодные элементы VD2-VD5 можно использовать любые, но они должны быть рассчитаны на ток 10 ампер.
  4. Детали VD7 и VD11 - кремневые импульсные.
  5. Диодные элементы VD6, VD8, VD10, VD5, VD12, VD13 должны выдерживать ток величиной 1 ампер.
  6. Светодиодный элемент VD1 — любой.
  7. В качестве детали VD9 допускается использование устройства класса КИПД29. Основная особенность данного источника освещения заключается в возможности изменения цвета, если меняется полярность соединения. Для переключения лампочки применяются контактные элементы К1.2 реле Р1. Если на аккумулятор идет зарядка основным током, светодиод горит желтым, а если включается режим подзарядки, то зеленым. Допускается применение двух одноцветных устройств, но их надо правильно подключить.
  8. Операционный усилитель КР1005УД1. Можно взять устройство из старого видеоплейера. Основная особенность заключается в том, что этой детали не требуется два полярных питания, она сможет работать при напряжении 5-12 вольт. Можно использовать любые аналогичные запчасти. Но из-за разной нумерации выводов надо будет изменить рисунок печатной схемы.
  9. Реле Р1 и Р2 должны быть рассчитаны на напряжения 9-12 вольт. А их контакты — на работу с током величиной 1 ампер. Если устройства оснащаются несколькими контактными группами, их рекомендуется запаять параллельным образом.
  10. Реле Р3 — на 9-12 вольт, но величина тока коммутации будет 10 ампер.
  11. Переключательное устройство S1, должно быть предназначено для работы с напряжением 250 вольт. Важно, чтобы в этом элементе было достаточно коммутирующих контактных компонентов. Если шаг регулировки в 1 ампер неважен, то можно поставить несколько переключателей и выставить ток заряда 5-8 А.
  12. Выключатель S2, предназначен для деактивации системы контроля уровня заряда.
  13. Также потребуется электромагнитная головка для измерителя тока и напряжения. Допускается применение любого типа устройств, главное, чтобы ток полного отклонения составит 100 мкА. Если будет замеряться не напряжение, а только ток, то в схему можно установить готовый амперметр. Он должен быть рассчитан на работу с максимальным постоянным током 10 ампер.

Пользователь Артем Квантов в теории рассказал о схеме зарядного оборудования, а также о подготовке материалов и деталей для ее сборки.

Порядок подключения аккумулятора к зарядным устройствам

Инструкция по включению ЗУ состоит из нескольких этапов:

  1. Очистка поверхности аккумулятора.
  2. Удаление пробок для заливки жидкости и контроль уровня электролита в банках.
  3. Выставление значения тока на зарядном оборудовании.
  4. Подключение клемм к аккумулятору с соблюдением полярности.

Очистка поверхности

Руководство по выполнению задачи:

  1. В автомобиле отключается зажигание.
  2. Открывается капот машины. Используя гаечные ключи соответствующего размера, от клемм аккумуляторной батареи надо отключить зажимы. Для этого гайки выкручивать не нужно, их можно ослабить.
  3. Выполняется демонтаж фиксирующей пластины, которая крепит батарею. Для этого может потребоваться ключ-головка либо звездочка.
  4. АКБ демонтируется.
  5. Производится очистка его корпуса чистой ветошью. Впоследствии будут откручиваться крышки банок для залива электролита, поэтому нельзя допустить попадания грузи внутрь.
  6. Выполняется визуальная диагностика целостности корпуса батареи. При наличии трещин, через которые вытекает электролит, заряжать АКБ нецелесообразно.

Пользователь Аккумуляторщик рассказал о выполнении очистки и промывки корпуса аккумуляторной батареи перед ее обслуживанием.

Удаление пробок заливки кислоты

Если аккумуляторная батарея обслуживаемая, в ней надо открутить крышки на пробках. Они могут быть скрыты под специальной защитной пластиной, ее нужно демонтировать. Для выкручивания пробок можно использовать отвертку или любую металлическую пластину соответствующего размера. После демонтажа надо оценить уровень электролита, жидкость должна полностью покрывать все банки внутри конструкции. Если ее недостаточно, то требуется долить дистиллированной воды.

Установка величины тока заряда на зарядном устройстве

Выставляется параметр тока для подзарядки АКБ. Если эта величина будет больше номинальной в 2-3 раза, то процедура заряда произойдет в быстрее. Но этот метод приведет к снижению ресурса эксплуатации батареи. Поэтому выставлять такой ток можно, если аккумулятор надо подзарядить быстро.

Подключение аккумулятора с соблюдением полярности

Процедура выполняется так:

  1. К клеммам АКБ подключаются зажимы от ЗУ. Сначала выполняется соединение положительного контакта, это красный провод.
  2. Отрицательный кабель можно не подключать, если АКБ остался в автомобиле и не демонтировался. Подсоединение данного контакта возможно к кузову транспортного средства либо к блоку цилиндров.
  3. Вилка от зарядного оборудования вставляется в розетку. Аккумулятор начинает заряжаться. Время заряда зависит от степени разряда устройства и его состояния. При выполнении задачи не рекомендуется использование удлинителей. Такой провод обязательно должен иметь заземление. Его величина будет достаточной, чтобы выдержать нагрузку силы тока.

Канал «VseInstrumenti» рассказал об особенностях подключения АКБ к зарядному прибору и соблюдении полярности при выполнении этой задачи.

Как определить степень разрядки аккумулятора

Для выполнения задачи потребуется мультиметр:

  1. Производится замер величины напряжения на автомобиле с отключенным двигателем. Электросеть транспортного средства в таком режиме будет потреблять часть энергии. Значение напряжения при замере должно соответствовать 12,5-13 вольтам. Выводы тестера подключаются с соблюдением полярности к контактам АКБ.
  2. Производится запуск силового агрегата, все электрооборудование должно быть выключено. Процедура измерения повторяется. Рабочая величина должна составить в диапазоне 13,5-14 вольт. Если полученное значение больше или меньше, это говорит о разряде аккумулятора и функционировании генераторного устройства не в штатном режиме. Увеличение данного параметра при низкой отрицательной температуре воздуха не может сообщить о разряде аккумулятора. Возможно, сначала полученный показатель будет больше, но если со временем он придет в норму, это говорит о работоспособности.
  3. Выполняется включение основных потребителей энергии - отопителя, магнитолы, оптики, системы обогрева заднего стекла. В таком режиме уровень напряжения составит в диапазоне от 12,8 до 13 вольт.

Величину разряда можно определить в соответствии с данными, приведенными в таблице.

Как рассчитать примерное время зарядки аккумулятора

Для определения приблизительного времени подзарядки потребителю необходимо знать разницу между максимальным значением заряда (12,8 В) и вольтажом в данный момент. Эта величина умножается на 10, в итоге получается время заряда в часах. Если уровень напряжения перед выполнением подзарядки составляет 11,9 вольт, то 12,8-11,9=0,8. Умножив это значение на 10 можно определить, что время подзарядки составит примерно 8 часов. Но это при условии, что будет осуществляться подача тока в размере 10% от емкости аккумулятора.

Неоднократно мы с вами беседовали о всевозможных зарядных устройствах для автомобильного аккумуляторам на импульсной основе, сегодня тоже не исключение. А рассмотрим мы конструкцию ИИП, который может иметь выходную мощность 350-600 ватт,но и это не предел, поскольку мощность при желании можно поднять до 1300-1500 ватт, следовательно, на такой основе можно соорудить пуско-зарядное устройство, ведь при напряжении 12-14 Вольт с блока 1500 ватт можно снять до 120 Ампер тока! ну разумеется

Конструкция привлекла мое внимание еще месяц назад, когда на одном из сайтов на глаза попалась статейка. Схема регулятора мощности показалось довольно простой, поэтому решил использовать эту схему для своей конструкции, которая особа проста и не требует никакой наладки. Схема предназначена для зарядки мощных кислотных аккумуляторов с емкостью 40-100А/ч, реализована по импульсной основе. Основной, силовой частью нашего зарядного устройства является сетевой импульсный блок питания с мощностью

Совсем недавно решил изготовить несколько зарядных устройств для автомобильного аккумуляторы, который собирался продавать на местном рынке. В наличии имелись довольно красивые промышленные корпуса, стоило лишь изготовить хорошую начинку и все дела. Но тут столкнулся с рядами проблем, начиная от блока питания, заканчивая узлом управления выходного напряжения. Пошел и купил старый добрый электронный трансформатор типа ташибра (китайский бренд) на 105 ватт и начал переделку.

Довольно простое зарядное устройство автоматического типа можно реализовать на микросхеме LM317, которая из себя представляет линейный стабилизатор напряжения с регулируемым выходным напряжением. Микросхема может также работать в качестве стабилизатора тока.

Качественное зарядное устройство для авто аккумулятора, на рынке можно приобрести за 50$, а сегодня расскажу самый простой способ изготовления такого зарядного устройства с минимальными расходами денежных средств, оно простое и изготовить сможет даже начинающий радиолюбитель.

Конструкцию простейшего зарядного устройства для автомобильных аккумуляторов можно реализовать за пол часа с минимальными затратами, ниже будет описан процесс сборки такого зарядного устройства.

В статье рассмотрено простое по схемному решению зарядное устройство (ЗУ) для аккумуляторов различного класса, предназначенных для питания электрических сетей автомобилей, мотоциклов, фонарей и т.д. ЗУ простое в эксплуатации, не требует корректировок в процессе заряда аккумулятора, не боится коротких замыканий, несложно и дешево в изготовлении.

Недавно в интернете попалась схема мощного зарядного устройство для автомобильных аккумуляторов с током до 20А. На самом деле это мощный регулируемый блок питания собранный всего на двух транзисторах. Основное достоинство схемы - минимальное количество используемых компонентов, но сами компоненты довольно недешевые, речь идет о транзисторах.

Естественно у каждого в машине есть зарядки в прикуриватель для всякого рода девайсов навигатор, телефон и т.д. Прикуриватель естественно не без размерный и тем более он один (вернее гнездо прикуривателя), а если еще и человек курящий то сам прикуриватель надо вынуть куда то положить, а если уж надо что-то подключить в зарядку то тогда использование прикуривателя по прямому назначению просто невозможно, можно решить подключение всякого рода тройников с гнездом как прикуриватель, но это как то

Недавно в голову пришла идея собрать автомобильное зарядное устройство на базе дешевых китайских БП с ценой 5-10$. В магазинах электроники сейчас можно найти такие блоки, которые предназначены для запитки светодиодных лент. Поскольку такие ленты питаются от 12 Вольт, следовательно выходное напряжение блока питания тоже в пределах 12Вольт

Представляю конструкцию несложного DC-DC преобразователя, который позволит вам зарядить мобильный телефон, планшетный компьютер или любое другое портативное устройство от автомобильной бортовой сети 12 Вольт. Сердцем схемы является специализированная микросхема 34063api разработанная специально для таких целей.

После статьи зарядного устройство из электронного трансформатора на мой электронный адрес поступило много писем, с просьбой пояснить и рассказать - как умощнить схему электронного трансформатора, и чтобы не писать каждому пользователю отдельно, решил напечатать эту статью, где я расскажу о тех основных узлах, которые нужно будет переделать для увеличения выходной мощности электронного трансформатора.

Статьи по теме