Автолиз лизосом. Что такое и как выглядят лизосомы – строение и функции

Лизосомы были впервые описаны в 1955 году Кристианом де Дювом в животной клетке, а позже были обнаружены и в растительной. У растений к лизосомам по способу образования, а отчасти и по функциям близки вакуоли . Лизосомы есть также у большинства протистов (как с фаготрофным, так и с осмотрофным типом питания) и у грибов.Таким образом, наличие лизосом характерно для клеток всех эукариот. У прокариот лизосомы отсутствуют, так как у них отсутствует фагоцитоз и нет внутриклеточного пищеварения.

Признаки лизосом

Один из признаков лизосом - наличие в них ряда ферментов (кислых гидролаз), способных расщеплять белки , углеводы , липиды и нуклеиновые кислоты . К числу ферментов лизосом относятся катепсины (тканевые протеазы), кислая рибонуклеаза, фосфолипаза и др. Кроме того, в лизосомах присутствуют ферменты, которые способны отщеплять от органических молекул сульфатные (cульфатазы) или фосфатные (кислая фосфатаза) группы.

Образование лизосом и их типы

Лизосомы формируются из пузырьков (везикул), отделяющихся от аппарата Гольджи , и пузырьков (эндосом), в которые попадают вещества при эндоцитозе . В образовании аутолизосом (аутофагосом) принимают участие мембраны эндоплазматического ретикулума. Все белки лизосом синтезируются на "сидячих" рибосомах на внешней стороне мембран эндоплазматического ретикулума и затем проходят через его полость и через аппарат Гольджи.

Лизосомы - гетерогенные органеллы, имеющие разную форму, размеры, ультраструктурные и цитохимические особенности. "Типичные" лизосомы животных клеток обычно имеют размеры 0,1-1 мкм, сферическую или овальную форму. Число лизосом варьирует от одной (крупная вакуоль во многих клетках растений и грибов) до нескольких сотен или тысяч (в клетках животных).

К сожалению, нет общепринятой классификации и номенклатуры для разных стадий созревания и типов лизосом. Различают первичные и вторичные лизосомы. Первые образуются в области аппарата Гольджи, в них находятся ферменты в неактивном состоянии, вторые же содержат активные ферменты. Обычно ферменты лизосом активируются при понижении рН. Среди лизосом можно также выделить гетеролизосомы (переваривающие материал, поступающий в клетку извне - путем фаго- или пиноцитоза) и аутолизосомы (разрушающие собственные белки или органоиды клетки). Наиболее широко используется следующая классификация лизосом и связанных с ними компартментов:

  1. Ранняя эндосома - в нее поступают эндоцитозные (пиноцитозные) пузырьки. Из ранней эндосомы рецепторы, отдавшие (из-за пониженного рН) свой груз, возвращаются на наружную мембрану.
  2. Поздняя эндосома - в нее из ранней эндосомы поступают пузырьки с материалом, поглощенном при пиноцитозе, и пузырьки из аппарата Гольджи с гидролазами. Рецепторы маннозо-6-фосфата возвращаются из поздней эндосомы в аппарат Гольджи.
  3. Лизосома - в нее из поздней эндосомы поступают пузырьки со смесью гидролаз и перевариваемого материала.
  4. Фагосома - в нее попадают более крупные частицы (бактерии и т.п.), поглощенные путем фагоцитоза. Фагосомы обычно сливаются с лизосомой.
  5. Аутофагосома - окруженный двумя мембранами участок цитоплазмы, обычно включающий какие-либо органоиды и образующийся при макроаутофагии. Cливается с лизосомой.
  6. Мультивезикулярные тельца - обычно окружены одинарной мембраной, содержат внутри более мелкие окруженные одинарной мембраной пузырьки. Образуются в результате процесса, напоминающего микроаутофагию (см. ниже), но содержат материал, полученный извне. В мелких пузырьках обычно остаются и затем подвергаются деградации рецепторы наружной мембраны (например, рецепторы эпидермального фактора роста). По стадии формирования соответствуют ранней эндосоме. Описано образование мультивезикулярных телец, окруженных двумя мембранами, путем отпочковывания от ядерной оболочки.
  7. Остаточные тельца (телолизосомы) - пузырьки, содержащие непереваренный материал (в частности, липофусцин). В нормальных клетках обычно, видимо, сливаются с наружной мембраной. При старении или патологии накапливаются.

Функции лизосом

Функциями лизосом -

  • переваривание захваченных клеткой при эндоцитозе веществ или частиц (бактерий, других клеток)
  • аутофагия - уничтожение ненужных клетке структур, например, во время замены старых органоидов новыми, или переваривание белков и других веществ, произведенных внутри самой клетки
  • автолиз - самопереваривание клетки, приводящее к ее гибели (иногда этот процесс не является паталогическим, а сопровождает развитие организма или дифференцировку некоторых специализированных клеток)

Внутриклеточное пищеварение и участие в обмене веществ

У многих протистов и у животных, имеющих внутриклеточное пищеварение, лизосомы участвуют в переваривании пищи, захваченной путем эндоцитоза. При этом лизосомы сливаются с пищеварительными вакуолями. У протистов непереваренные остатки пищи обычно удаляются из клетки при слиянии пищеварительной вакуоли с наружной мембраной.

Многие клетки животных, у которых преобладает полостное пищеварение (например, хордовые) получают питательные вещества из межклеточной жидкости или плазмы крови с помощью пиноцитоза. Эти веществ также вовлекаются в обмен веществ клетки после их переваривания в лизосомах. Хорошо изученный пример такого участия лизосом в обмене веществ - получени клетками холестерина. Холестерин, приносимый кровью в виде ЛПНП , поступает внутрь пиноцитозных везикул после соединения ЛПНП с рецепторами ЛПНП на мембране. Рецепторы возвращаются к мембране из ранней эндосомы, а ЛПНП поступают в лизосомы. После этого ЛПНП перевариваются, а высвободившийся холестерин через мембрану лизосом поступает в цитоплазму.

Косвенно лизосомы участвуют в обмене, обеспечивая десенсибилизацию клеток к воздействию гормонов. При длительном действии гормона на клетку часть рецепторов, связавших гормон, поступают в эндосомы и затем деградируют внутри лизосом. Снижение числа рецепторов понижает чувствительность клетки к гормону.

Для крупных вакуолей растений характерна запасающая функция - в них могут накапливаться ионы, пигменты (например, антоцианы), вторичные метаболиты, белки (в алейроновых зернах эндосперма злаков). Внутри вакуолей (например, в прорастающих семенах) у растений происхдят и процессы переваривания запасенных белков.

Аутофагия

Обычно различают два типа аутофагии - микроаутофагия и макроаутофагия. При микроаутофагии, как при образовании мультивезикулярных телец, образуются впячивания мембраны эндосомы или лизосомы, которые затем отделяются в виде внутренних пузырьков, только в них попадают вещества, синтезированные в самой клетке. Таким путем клетка может переваривать белки при нехватке энергии или строительного материала (например, при голодании). Но процессы микроаутофагии происходят и при нормальных условиях и в целом неизбирательны. Иногда в ходе микроаутофагии перевариваются и органоиды; так, у дрожжей описана микроаутофагия пероксисом и частичная микроаутофагия ядер, при которой клетка сохраняет жизнеспособность.

При макроаутофагии участок цитоплазмы (часто содержащий какие-либо органоиды) окружается мембранным компартментом, похожим на цистерну эндоплазматической сети. В результате этот участок оказывается отгорожен от остальной цитоплазмы двумя мембранами. Затем такая аутофагосома сливается с лизосомой, и ее содержимое переваривается. Видимо, макроаутофагия также неизбирательна, хотя часто подчеркивается, что с помощью нее клетка может избавляться от "отслуживших свой срок" органоидов (митохондрий. рибосом и др.).

Третий тип аутофагии - шаперон-зависимая. При этом способе происходит направленный транспорт частично денатурировавших белков из цитоплазмы сквозь мембрану лизосомы в ее полость.

Автолиз

Ферменты лизосом нередко высвобождаются при разрушении мембраны лизосомы. Обычно при этом они инактивируются в нейтральной среде цитоплазмы. Однако при одновременном разрушении всех лизосом клетки может произойти ее саморазрушение - автолиз. Различают патологический и обычный автолиз. Распространенный вариант патологического автолиза - посмертный автолиз тканей.

В норме процессы автолиза сопровождают многие явления, связанные с развитием организма и дифференцировкой клеток. Так, аутолиз клеток описывается как механизм разрушения тканей у личинок насекомых при полном превращении , а также при рассасывании хвоста у головастика. Правда, эти описания относятся к периоду, когда различия между апоптозом и некрозом еще не были установлены, и в каждом случае требуется выяснять, не лежит ли на самом деле в основе деградации органа или ткани апоптоз, не связанный с автолизом.

У растений автолизом сопровождается дифференциация клеток, которые функционируют после смерти (например, трахеид или члеников сосудов). Частичный автолиз происходит и при созревании клеток фложмы - члеников ситовидных трубок.

Клиническое значение. Болезни, связанные с нарушением работы лизосом

Иногда из-за неправильной работы лизосом развиваются болезни накопления, при которых ферменты из-за мутаций не работают или работают плохо. Примером болезней накопления может служить амовротическая идиотия при накоплении гликогена.

См. также

  • LAMP2

Ссылки

Wikimedia Foundation . 2010 .

Смотреть что такое "Лизосомы" в других словарях:

    Лизосомы - * лізасомы * lysosomes органеллы клеток животных и грибов, имеющих однослойную мембрану, которые содержат ряд гидролитических ферментов, в их числе 50 кислых гидролаз, включая фосфатазы, гликозидазы, протеазы, сульфатазы, липазы и нуклеазы.… … Генетика. Энциклопедический словарь

    - (от лиз... и греч. soma тело) клеточные структуры, содержащие ферменты, способные расщеплять (лизировать) белки, нуклеиновые кислоты, полисахариды. Участвуют во внутриклеточном переваривании веществ, поступающих в клетку путем фагоцитоза и… … Большой Энциклопедический словарь

    - (от лиз... и греч. sōma тело), клеточные структуры, содержащие ферменты, способные расщеплять (лизировать) белки, нуклеиновые кислоты, полисахариды. Участвуют во внутриклеточном переваривании веществ, поступающих в клетку путём фагоцитоза и… … Энциклопедический словарь

    - (от греч. lýsis распад, разложение и soma тело) структуры в клетках животных и раститеьных организмов, содержащие ферменты (около 40), способные расщеплять (лизировать) белки, нуклеиновые кислоты, полисахариды, липиды (отсюда название).… … Большая советская энциклопедия

А. Структура лизосом

Лизосомы -- это органеллы диаметром 0,2-2,0 мкм, окруженные простой мембраной, способные принимать самые разные формы. Обычно на клетку приходится несколько сотен лизосом. Функция лизосом заключается в деградации клеточных компонентов. Деградация достигается за счет присутствия в лизосомах около 40 типов различных расщепляющих ферментов -- гидролаз с оптимумом действия в кислой области. Главный фермент лизосом -- кислая фосфатаза. В мембране лизосом находятся АТФ-зависимые протонные насосы вакуольного типа. Они обогащают лизосомы протонами, вследствие чего для внутренней среды лизосом рН 4,5-5,0 (в то время как в цитоплазме рН 7,0-7,3). Лизосомные ферменты имеют оптимум рН около 5,0, т. е. в кислой области. При рН, близких к нейтральным, характерным для цитоплазмы, эти ферменты обладают низкой активностью. Очевидно, это служит механизмом защиты клеток от самопереваривания о том случае, если лизосомный фермент случайно попадет в цитоплазму.

Б. Функции

Главная функция лизосом -- ферментативная деградация попавших в них макромолекул и органелл. Примером может служить деградация отработавших митохондрий по механизму аутофагии (захвата органеллы) (1). После захвата органеллы первичные лизосомы превращаются во вторичные, в которых и идет процесс гидролитического расщепления (2). В итоге образуются «остаточные тела», состоящие из негидролизовавшихся фрагментов. Лизосомы ответственны также за деградацию макромолекул и частиц, захваченных клетками путем эндоцитоза и фагоцитоза, например липопротеинов, протеогормонов и бактерий (гетерофагия). В этом случае лизосомы сливаются с эндосомами (3), содержащими вещества, подлежащие деградации.

В. Ферменты, их химическая природа и функциональное значение.

Ферменты лизосом: рибонуклеаза, дезоксирибонуклеаза, фосфатаза, гликозидазы, арилсульфатазы (органические эфиры серной кислоты), коллагеназа, катепсины.

Г. Функции

Лизосомы представляют собой крайне полиморфные образования, строение которых можно рассмотреть только в электронном микроскопе. Их разнообразие связано с тем, что они заполнены разными веществами и структурами, находящимися на различных стадиях расщепления и переваривания. Простейшие лизосомы (протолизосомы или первичные лизосомы) - это окруженные мембраной пузырьки с гомогенным содержимым, локализующиеся около аппарата Гольджи. Образование лизосом аналогично развитию секреторных гранул. Синтез ферментов осуществляется на рибосомах гранулярного ретикулума, а процесс оформления лизосом происходит в аппарате Гольджи. Доказательством того, что образование лизосом связано с внутриклеточным сетчатым аппаратом, является не только их локализация, но и выявление кислой фосфатазы помимо лизосом и в комплексе Гольджи.

Вторичные лизосомы образуются из первичных лизосом либо в связи с процессом фагоцитоза, либо в результате аутолиза.

В результате фагоцитоза в цитоплазме клеток появляются фагосомы - вакуоли, окруженные фрагментом плазматической мембраны, внутри которых находится захваченная частица. Эти фагосомы с первичными лизосомами, образуют пищеварительные вакуоли - одну из разновидностей вторичных лизосом. Под действием гидролаз внутри пищеварительной вакуоли происходит расщепление захваченных макромолекул до мономеров, которые используются клеткой.

Лизосома может быть использована вторично и вновь соединиться уже с другой фагосомой. В других случаях она работает лишь один раз и, исчерпав свои возможности, в новый пищеварительный процесс уже вступить не может.

В результате процесса аутолиза образуется другая разновидность вторичных лизосом - так называемые аутолизосомы. Явление аутолиза (переваривания структур, принадлежащих самой клетке) связано с тем, что жизнь клеточных структур не безгранична. Старые органоиды отмирают и начинают перевариваться лизосомами. Мономерами, образующимися в процессе аутолиза, клетка также может воспользоваться.

Из сказанного ясно, что разнообразие тонкого строения лизосом обусловлено тем, что они заполнены разными перевираемыми структурами, как принадлежащими самой клетке, так и попавшими в нее извне.

Не все, попавшее в лизосому, может подвергнуться расщеплению. Так, например, среди гидролаз лизосом находится лишь очень небольшой процент липаз, поэтому в телолизосомах липидные компоненты часто не расщепляются. Образуются остаточные тельца - лизосомы, заполненные непереваренными остатками, исчерпавшие весь свой запас гидролаз. Такие структуры - телолизосомы - либо выводятся за пределы клетки, как, например, у простейших, либо сохраняются в клетке до момента ее гибели. В некоторых нервных клетках такие балластные вещества в виде окрашенных непереваренных частиц (например, зерен липофусцина, являющихся показателем старения) сохраняются на протяжении всей жизни организма.

Следует также упомянуть о тех случаях, когда гидролитические ферменты проявляют свою активность за пределами лизосом. Например, при некоторых патологических состояниях клетки мембрана, окружающая лизосомы, становится проницаемой для ферментов, которые выходят за пределы лизосом и начинают переваривать клетку. Таким образом, уничтожение стареющих, гибнущих клеток может происходить двумя путями. Либо эти клетки захватываются макрофагами и расщепляются гидролазами их лизосом, либо включается в действие аппарат аутолиза самой клетки.

Совершенно иной внеклеточный способ использования лизосом наблюдается в процессе гистогенеза костной ткани и при перестройке кости. В этом случае специальные симпластические структуры - остеокласты выделяют лизосомы в промежуточное вещество костной ткани, которое разрушается под действием гидролаз лизосом.

Лизис хвоста головастика тоже представляет собой процесс, связанный с деятельностью лизосом.

Таким образом, лизосомы играют роль и для внеклеточных процессов и имеют приспособительное значение для организма в целом.

3. Митохондрии: структура и функции

А. Структура митохондрий

Митохондрии - это органеллы размером с бактерию (около 1 х 2 мкм). Они найдены в большом количестве почти во всех эукариотических клетках. Митохондрии - это цитоплазматические органеллы. Их количество и форма варьируют в зависимости от функции клетки. Например, у млекопитающих в клетках печени имеется по 1000-1500 митохондрий. Все они имеют общие структурные особенности матрикс, внутреннюю и внешнюю мембрану Обычно в клетке содержится около 2000 митохондрий, общий объем которых составляет до 25% от общего объема клетки. Митохондрия ограничена двумя мембранами - гладкой внешней и складчатой внутренней, имеющей очень большую поверхность. Складки внутренней мембраны глубоко входят в матрикс митохондрий, образуя поперечный перегородки - кристы. Пространство между внешней и внутренней мембранами обычно называют межмембранным пространством.

Различный типы клеток отличаются друг от друга как по количеству и форме митохондрий, так и по количеству крист. Особенно много крист имеют митохондрии в тканях с активными окислительными процессами, например в сердечной мышце. Вариации митохондрий по форме, что зависит от их функционального состояния, могут наблюдаться и в тканях одного типа. Митохондрии -- изменчивые и пластичные органеллы.

Мембраны митохондрий содержат интегральные мембранные белки. Во внешнюю мембрану входят порины, которые образуют поры и делают мембраны проницаемыми для веществ с молекулярной массой до 10 кДа. Внутренняя же мембрана митохондрий непроницаема для большинства молекул; исключение составляют О2, СО2, Н20. Внутренняя мембрана митохондрий характеризуется необычно высоким содержанием белков (75%). В их число входят транспортные белки-переносчики, ферменты, компоненты дыхательной цепи и АТФ-синтаза. Кроме того, в ней содержится необычный фосфолипид кардиолипин. Матрикс также обогащен белками, особенно ферментами цитратного цикла.

Б. Метаболические функции

Митохондрии являются «силовой станцией» клетки, поскольку за счет окислительной деградации питательных веществ в них синтезируется большая часть необходимого клетке АТФ (АТР). В митохондриях локализованы следующие метаболические процессы: превращение пирувата в ацетил-КоА, катализируемое пируватдегидрогеназным комплексом: цитратный цикл; дыхательная цепь, сопряженная с синтезом АТФ (сочетание этих процессов носит название «окислительное фосфорилирование»); расщепление жирных кислот путем в-окисления и частично цикл мочевины. Митохондрии также поставляют клетке продукты промежуточного метаболизма и действуют наряду с ЭР как депо ионов кальция, которое с помощью ионных насосов поддерживает концентрацию Са2+ в цитоплазме на постоянном низком уровне (ниже 1 мкмоль/л), то есть поглощение из цитозоля ионов Са2+ . Концентрация Са2+ в цитозоле должна поддерживаться на очень низком уровне, так как даже незначительные изменения концентрации этих ионов служат регуляторными сигналами для различных клеточных процессов (разд. 13.3.7). Во внутренней мембране имеется транспортный белок, эффективно переносящий Са2+ в матрикс за счет энергии мембранного потенциала.

Главной функцией митохондрий является захват богатых энергией субстратов (жирные кислоты, пируват, углеродный скелет аминокислот) из цитоплазмы и их окислительное расщепление с образованием СО2 и Н2О, сопряженное с синтезом АТФ.

Реакции цитратного цикла приводят к полному окислению углеродсодержащих соединений (СО2) и образованию восстановительных эквивалентов, главным образом в виде восстановленных коферментов. Большинство этих процессов протекают в матриксе. Ферменты дыхательной цепи, которые реокисляют восстановленные коферменты, локализованы во внутренней мембране митохондрий. В качестве доноров электронов для восстановления кислорода и образования воды используются НАДН и связанный с ферментом ФАДН2. Эта высоко экзергоническая реакция является многоступенчатой и сопряжена с переносом протонов (Н+) через внутреннюю мембрану из матрикса в межмембранное пространство. В результате на внутренней мембране создается электрохимический градиент. В митохондриях электрохимический градиент используется для синтеза АТФ из АДФ (ADP) и неорганического фосфата (Рi) при катализе АТФ-синтазой. Электрохимический градиент является также движущей силой ряда транспортных систем

Митохондрии осуществляют важные биохимические функции, в частности, именно в них происходит аэробное окисление. Вот почему эти органеллы часто называют энергетической фабрикой организма. Энергия хранится в АТР (аденозинтрифосфат). Из трех энергетических источников нашей пищи аминокислоты и жиры подвергаются распаду только в результате аэробного окисления, которое происходит в митохондриях. Кроме того, в них осуществляется цикл лимонной кислоты. Мембрана митохондрий содержит упорядоченную мультиферментную систему, а распределение ферментов в функционально значимом порядке гарантирует упорядоченную последовательность биохимических реакций.

В. Транспортные системы

Митохондрии имеют внутреннюю и внешнюю мембраны.

Внутренняя мембрана непроницаема для большинства низкомолекулярных соединений. Она удерживает не только продукты промежуточного метаболизма (например, пируват и ацетил-КоА), но и неорганические ионы (Н+ и Na+). Поэтому в цитоплазме и митохондриях существуют независимые пулы ионов и метаболитов. Напротив, внешняя мембрана содержит порообразующие белки, которые делают ее проницаемой для низкомолекулярных соединений.

Транспортные системы

Обмен между цитоплазмой и матриксом обеспечивается специальными транспортными системами, локализованными во внутренней мембране митохондрий и способными переносить разнообразные вещества (пируват, фосфат, АТФ, АДФ, глутамат, аспартат, малат, 2-оксоглутарат, цитрат, жирные кислоты) по механизмам типа антипорт (обменная диффузия, А), симпорт (сопряженный транспорт, S) или унипорт (облегченная диффузия, U) (см. рис. 221). Имеется переносчик и для ионов Са2+, который наряду с ЭР регулирует концентрацию Са2+ в цитоплазме.

Большая часть АТФ. продуцируемого митохондриями в матриксе, доставляется в цитоплазму с помощью АДФ/АТФ-транслоказы в обмен на АДФ (обменная диффузия). Фосфат поступает в митохондрии вместе с протонами независимо от транспорта АДФ/АТФ.

Аналогичным образом при участии пируватспецифичного переносчика осуществляется одновременный перенос через внутреннюю мембрану пирувата и протонов.

Транспорт жирных кислот

В митохондриях за перенос жирных кислот отвечает специальная транспортная система. Активированные жирные кислоты в форме ацил-КоА становятся транспортабельными в цитоплазме после взаимодействия с карнитином. Образовавшийся ацилкарнитин транспортируется в матриксе карнитиновым переносчиком, обмениваясь на свободный карнитин. В матриксе ацильные остатки вновь связываются с КоА.

Малатный челнок

Для импорта восстановительных эквивалентов в форме НАДН+Н+ (кофермент-связанного водорода), образующихся в цитоплазме путем гликолиза, в митохондриях имеются несколько челночных систем. В митохондриях млекопитающих этот транспорт осуществляется в основном при помощи челночного механизма, использующего пару малат-оксалоацетат. Основной функцией этого механизма является перенос восстановительных эквивалентов в составе малата. Малат, попадая в матрикс при посредстве переносчика, окисляется до оксалоацетата под действием малатдегидрогеназы. Оксалоацетат переносится обратно в цитоплазму лишь после трансаминирования в аспартат. Поскольку оксалоацетат может образовываться в избыточном количестве, в реакции трансаминирования и последующем транспорте принимает участие глутамат и 2-оксоглутарат. На схеме показано, что малатный челнок функционирует в обоих направлениях, обеспечивая перенос восстановительных эквивалентов от цитоплазматического НАДН в митохондрии без переноса НАД+. В митохондриях насекомых трансмембранный перенос восстановительных эквивалентов осуществляется с помощью глицерофосфатного челнока.

Движущей силой транспортных процессов во внутренней мембране митохондрий служит концентрационный градиент метаболитов или электрохимический потенциал (см. рис. 143). Например, карнитиновая система транспорта жирных кислот работает за счет высоких концентраций ацил-КоА в цитоплазме. Движущей силой импорта фосфата и пирувата служит протонный градиент, в то время как обмен АТФ/АДФ и выброс ионов Са2+ зависят от трансмембранного потенциала внутренней мембраны митохондрий.

Г. Ферменты митохондрий

Основные ферменты митохондрий:

Ферменты митохондрий состоят из растворимых и нерастворимых белков: флавопротеиды, цитохромы -- компоненты дыхательной цепи -- жестко фиксированы на мито-хондриальной мембране и гребнях. Растворимые ферменты принимают участие в биосинтезе фосфолипидов и жирных кислот; здесь же находится полный набор ферментов, катализирующих превращения цикла трикарбоновых кислот.

Лизосома - клеточный органоид размером 0,2 - 0,4 мкм, один из видов везикул. Эти одномембранные органоиды - часть вакуома (эндомембранной системы клетки)

Лизосомы формируются из пузырьков (везикул), отделяющихся от аппарата Гольджи, и пузырьков (эндосом), в которые попадают вещества при эндоцитозе. В образовании аутолизосом (аутофагосом) принимают участие мембраны эндоплазматического ретикулума. Все белки лизосом синтезируются на «сидячих» рибосомах на внешней стороне мембран эндоплазматического ретикулума и затем проходят через его полость и через аппарат Гольджи.

Функциями лизосом являются:

1.переваривание захваченных клеткой при эндоцитозе веществ или частиц (бактерий, других клеток)

2.аутофагия - уничтожение ненужных клетке структур, например, во время замены старых органоидов новыми, или переваривание белков и других веществ, произведенных внутри самой клетки

3.автолиз - самопереваривание клетки, приводящее к ее гибели (иногда этот процесс не является патологическим, а сопровождает развитие организма или дифференцировку некоторых специализированных клеток). Пример: При превращении головастика в лягушку, лизосомы, находящиеся в клетках хвоста, переваривают его: хвост исчезает, а образовавшиеся во время этого процесса вещества всасываются и используются другими клетками тела.

Пероксисомы: понятие, строение, расположение, значение.

Пероксисома - обязательная органелла эукариотической клетки, ограниченная мембраной, содержащая большое количество ферментов, катализирующих окислительно-восстановительные реакции (оксидазы D-аминокислот, уратоксидазы и каталазы). Имеет размер от 0,2 до 1,5 мкм, отделена от цитоплазмы одной мембраной.

Набор функций пероксисом различается в клетках разных типов. Среди них: окисление жирных кислот, фотодыхание, разрушение токсичных соединений, синтез желчных кислот, холестерина, а также эфиросодержащих липидов, построение миелиновой оболочки нервных волокон, метаболизме фитановой кислоты и т. д. Наряду с митохондриями пероксисомы являются главными потребителями O2 в клетке.



Органоиды синтеза: понятие, разновидности, расположение, строение, значение.(см в 35,36 и 37 ответ)

Рибосомы: понятие, строение, разновидности, значение.

Рибосома - важнейший немембранный органоид живой клетки сферической или слегка эллипсоидной формы, диаметром 100-200 ангстрем, состоящий из большой и малой субъединиц. Рибосомы служат для биосинтеза белка из аминокислот по заданной матрице на основе генетической информации, предоставляемой матричной РНК, или мРНК. Этот процесс называется трансляцией.

В эукариотических клетках рибосомы располагаются на мембранах эндоплазматической сети, хотя могут быть локализованы и в неприкрепленной форме в цитоплазме. Нередко с одной молекулой мРНК ассоциировано несколько рибосом, такая структура называется полирибосомой. Синтез рибосом у эукариот происходит в специальной внутриядерной структуре - ядрышке.

Эндоплазматическая сеть: понятие, строение, разновидности, значение.

Эндоплазматический ретикулум (ЭПР) или эндоплазматическая сеть (ЭПС) - внутриклеточный органоид эукариотической клетки, представляющий собой разветвлённую систему из окружённых мембраной уплощённых полостей, пузырьков и канальцев.

Выделяют два вида ЭПС:

Гранулярный эндоплазматический ретикулум;

Агранулярный (гладкий) эндоплазматический ретикулум.

Аппарат Гольджи: понятие, строение при световой и электронной миткроскопии, расположение.

Аппарат Гольджи (комплекс Гольджи) - мембранная структура эукариотической клетки, органелла, в основном предназначенная для выведения веществ, синтезированных в эндоплазматическом ретикулуме.

Комплекс Гольджи представляет собой стопку дискообразных мембранных мешочков (цистерн), несколько расширенных ближе к краям, и связанную с ними систему пузырьков Гольджи. В растительных клетках обнаруживается ряд отдельных стопок (диктиосомы), в животных клетках часто содержится одна большая или несколько соединённых трубками стопок.

Органоиды цитоскелета: понятие, разновидности, строение, значение.

Цитоскелет - это клеточный каркас или скелет, находящийся в цитоплазме живой клетки. Он присутствует во всех клетках как у эукариот, так и у прокариот. Это динамичная, изменяющаяся структура, в функции которой входит поддержание и адаптация формы клетки ко внешним воздействиям, экзо- и эндоцитоз, обеспечение движения клетки как целого, активный внутриклеточный транспорт и клеточное деление.Цитоскелет образован белками.

В цитоскелете выделяют несколько основных систем, называемых либо по основным структурным элементам, заметным при электронно-микроскопических исследованиях (микрофиламенты, промежуточные филаменты, микротрубочки), либо по основным белкам, входящим в их состав (актин-миозиновая система, кератины, тубулин-динеиновая система).

Лизосомы – это мембранные органеллы диаметром от 0,2 до 2,0мкм. Входят в состав эукариотической клетки, где находятся сотни лизосом. Главная их задача – это внутриклеточное переваривание (расщепление биополимеров), для этого органеллы имеют специальный набор гидролитических ферментов (сегодня известно около 60 видов). Ферментные вещества окружены замкнутой оболочкой, что предотвращает их проникновение внутрь клетки и ее разрушение.

Первые выявил лизосомы и занялся их изучением бельгийский ученый в области биохимии Кристианом де Дювом еще в 1955 году.

Особенности строения лизосом

Лизосомы имеют вид мембранных мешочков с кислым содержимым. По конфигурации бывают овальными или круглыми. Во всех клетках организма есть лизосомы, исключение – эритроциты.

Особым отличием лизосом от остальных органоидов является наличие во внутренней среде кислых гидролаз. Они обеспечивают распад веществ белковой природы, жиров, углеводов, а также нуклеиновых кислот.

К лизосомальным ферментам принадлежат фосфатазы (маркерный фермент), сульфатаза, фосфолипаза и многие другие. Оптимальная среда для нормальной работы органелл — кислая (pH = 4,5 — 5). При недостаточности ферментов или не эффективной их деятельности, ощелачивании внутренней среды, могут возникнуть лизосомальные болезни накопления (гликогенозы, мукополисахаридозы, болезнь Гоше, Тай-Сакса). Как следствие в клетке накапливаются непереваренные вещества: гликопротеиды, липиды и др.

Одномембранная оболочка лизосом оснащена транспортными белками, которые обеспечивают перенос из органеллы во внутреннюю среду клетки продуктов переваривания.


Есть ли в растительной клетке лизосомы?

Нет. В клетках растений содержатся вакуоли – образования, заполненные соком и заключены в оболочку. Они образуются из провакуолей, отошедших от ЭПС и . Клеточные вакуоли осуществляют ряд важных функций: накопление питательных веществ, поддержание тургора, переваривание органических веществ (что указывает на сходство между растительными вакуолями и лизосомами).

Где образуются лизосомы?

Формирование лизосом идет из пузырьков, отпочковавшихся от аппарата Гольджи. Для образования органелл необходимо также участие зернистой мембраны эндоплазматической сети. Все ферменты лизосом синтезируются рибосомами ЭПС, а затем направляются к аппарату Гольджи.

Виды лизосом

Различают два вида лизосом. Первичные лизосомы формируются возле аппарата Гольджи и содержат не активированные ферменты.

Вторичные лизосомы , или фагосомы имеют активированные ферменты, которые непосредственно взаимодействуют с расщепленными биополимерами. Как правило, ферменты лизосом активируются при изменении рН в кислую сторону.

Лизосомы также делятся на:

  • гетеролизосомы — переваривающие вещества, захваченные клеткой путём фагоцитоза (твердые частицы) или пиноцитоза (поглощение жидкости);
  • аутолизосомы — предназначены для разрушения собственных, внутриклеточных структур.

Функции лизосом в клетке

  • Внутриклеточное переваривание;
  • аутофагоцитоз;
  • аутолиз.

Внутриклеточное переваривание попавших в клетку в процессе эндоцитоза питательных соединений или чужеродных агентов (бактерий, вирусов и т.д.) осуществляется под действием лизосомальных ферментов.

После переваривания захваченного материала, продукты распада попадают в цитоплазму, непереваренные частицы остаются внутри органеллы, которая теперь носит название — остаточного тельца . При нормальных условиях тельца покидают клетку. В нервных клетках, которые имеют длительный жизненный цикл, за период существования накапливается множество остаточных телец, в которых содержится пигмент старения (не выводятся также при развитии патологии).

Аутофагоцитоз - расщепление клеточных структур, которые уже стали не нужны, например, во время формирования новых органелл, от старых клетка избавляется путем аутофагоцитоза.

Аутолиз - самоуничтожение клетки, которое приводит к её разрушению. Этот процесс не всегда носит патологический характер, а происходит в нормальных условиях развития индивидуума или при дифференцировке отдельных клеток.

Например: гибель клеток естественный процесс для нормально функционирующего организма, поэтому существует запрограммированная их смерть — апоптоз. Роль лизосом при апоптозе достаточно велика: гидролитические ферменты осуществляют переваривание отмерших клеток, и очищают организм от тех, что уже выполнили свою функцию.

При преобразовании головастика в зрелую особь, лизосомы, располагающиеся в клетках хвостовой части, расщепляют его, как следствие хвост исчезает, а продукты переваривания поглощаются остальными клетками тела.

Сводная таблица строения и функций лизосом

Строение и функции лизосом
Этапы Функции
Ранняя эндосома Образуется при эндоцитозе внеклеточного материала. Из эндосомы рецепторы, передавшие (из-за низкого рН) свой груз, переходят обратно на внешнюю оболочку.
Поздняя эндосома Из ранней эндосомы в полость поздней эндосомы переходят мешочки с частицами, поглощёнными при пиноцитозе, и пузырьки из пластинчатого комплекса с кислыми ферментами.
Лизосома Пузырьки поздней эндосомы переходят к лизосоме, содержат гидролазирующие ферменты и вещества для переваривания.
Фагосома Предназначена для расщепления крупных частиц, захваченных путём фагоцитоза. Фагосомы потом соединяются с лизосомой для дальнейшего переваривания
Аутофагосома Область цитоплазмы окружена двойной мембраной, формируется при макроаутофагии. Затем соединяется с лизосомой.
Мультивезикулярные тельца Одномембраные образования, содержат несколько мелких мембранных мешочков. Образуются при микроаутофагоцитозе, переваривают материал, поступивший снаружи.
Телолизосомы Пузырьки, накапливающие непереваренные вещества (чаще всего, липофусцин). В здоровых клетках соединяются с внешней оболочкой и с помощью экзоцитоза оставляют клетку.

Клетки, представляющие собой сложные физиологические системы, состоят из множества элементов. Каждому из них присущи индивидуальные свойства. Лизосомами называют клеточные органоиды, размеры которых обычно составляют от 0,2 до 0,4 мкм. Они являются частью мембранной системы клетки, формируясь из эндосом и везикул.

Строение

Особенности строения лизосомы изучены достаточно хорошо. Она содержит внутри себя гидролитические ферменты. В ней имеются гидролазы, отличающиеся возможностью деполимизировать всевозможные вещества - нуклеиновые кислоты, полисахариды, белки, липиды. Перечисленный набор ферментов должен быть надежно изолирован от прочих клеточных органоидов, иначе он попросту разрушит их.

Данные мембранные пузырьки обладают способностью к поглощению и разрушению веществ, являющихся результатом образования вторичных лизосом. Среда в этих органоидах кислая, в отличие от других клеточных элементов, имеющих нейтральную реакцию. Плазматическую мембрану и лизосомы образует пластинчатый механизм. В результате получаются органоиды, называющиеся первичными.

Сверху лизосома, строение и функции которой изучаются в школьной программе, покрыта одномембранной оболочкой, имеющей порою белковый волокнистый слой. В мембране есть набор рецепторов, обеспечивающих процесс сцепления с фагосомами и транспортными пузырьками. С помощью нее происходит беспрепятственное проникновение продуктов пищеварения, но кроме этого, она играет и роль барьера.

Функции

Лизосома выполняет ряд важных функций:

  1. Ликвидация клеточных структур, которые ей не нужны. При этом новые органоиды заменяют старые. Также в процессе аутофагии уничтожаются вещества, образовавшиеся внутри физиологической системы.
  2. Ликвидация вредных бактерий и веществ, поступивших во время эндоцитоза.
  3. Полное переваривание клетки. Данную способность нельзя назвать патологией, так как она приводит к дифференцировке клеток, общему развитию организма. Самый яркий пример тому - появление лягушки из головастика.

Переваривание захваченных во время фагоцитоза внеклеточных веществ именуется гетерофагией. Это основная функция лизосом. Данный процесс у значительного количества простейших организмов служит ключевым методом пищеварения. Внутри многоклеточных существ такая способность присутствует у микрофагов и лейкоцитов. Они поглощают ненужные и чужеродные структуры, осуществляя эффективную защиту.

Если лизосома утратила способность к гетерофагии, то она становится остаточным тельцем. В ней отсутствуют полезные ферменты, зато имеется много непереваренного материала.

Особенности

Особенности строения лизосомы обуславливают то, что она может локализовать в себе вторичные метаболиты, белки, пигменты и ионы в растениях. Если ее деятельность нарушена, то пострадает весь организм. Сбои будут способствовать появлению и развитию различных болезней. Так, когда мембранные пузырьки лопаются, ферменты, содержащиеся в них, попадают в гиалоплазму (подобное случается при некрозах, а также вследствие излучения). Разрывы приводят к чрезмерной активности гидролаз.

Лизосома, строение и функции которой могут иметь различные вариации, обладает порой разным химическим составом и структурой, формой и размерами. Она присутствует в клетках не только растений, животных, но и грибов, участвуя в аутофагоцитозе и переваривании твердых частиц.

Виды

Лизосома, строение и функции которой мы рассматриваем, имеет четыре разновидности:

  • Первичные. Имеют вид пузырьков, внутри которых присутствует бесструктурное вещество и гидролазы. Они отличаются очень маленькими размерами, поэтому их можно спутать с мельчайшими вакуолями в зоне АГ.
  • Вторичные. Образуются из первичных путем их слияния с пиноцитарными и фагоцитарными вакуолями. При этом мембранные пузырьки будут расщеплять содержимое последних.
  • Аутофагосомы. Могут встречаться в простейших организмах. Они являются видом вторичных лизосом, но отличаются от них тем, что включают в себя части цитоплазматических структур. Образование лизосом, называющихся аутофагосомами, до сих пор полностью не ясно. Существует предположение, что данный процесс связывается с ликвидацией сложных элементов клетки.
  • Остаточные тельца. Если обменные процессы не достигают своего завершения, то внутри мембранных пузырьков происходит накопление продуктов, которые переварены не до конца. Тогда образуются остаточные тельца. В них ферменты присутствуют в меньшем количестве. Содержимое уплотняется и переотрабатывается.

Значение

Лизосома, строение и функции которой зависят от ее вида, может иметь для организма разное значение. Если она начинает работать неправильно, то в организме возникают отклонения. При этом развивается болезнь Тея-Сакса, Помпе, Гоше, а также другие наследственные патологии. Наличие поврежденных частиц приводит к различным воспалениям.

Таким образом, лизосомам принадлежит важнейшая роль в нормальном функционировании клеток. Они присутствуют практически в каждом организме, принимая участие в автолизе, аутофагии и переваривании вредных веществ. Нарушения же в этих частицах вызывают множество тяжелых заболеваний.

Статьи по теме